Chart Aggregation functions

These functions can only be used on fields in chart expressions. The argument expression of one aggregation function must not

 contain another aggregation function.The aggregation functions are:
Basic Aggregation Functions
String Aggregation Functions
Counter Aggregation Functions
Statistical Aggregation Functions in Charts
Financial Aggregation Functions in Charts
Statistical Distribution Functions
Special Input Field Aggregation Functions
Advanced Aggregation

Set Analysis

Alternate States

If the word distinct occurs before an expression, duplicates resulting from the evaluation of this expression will be disregarded.
If the word total occurs before an expression, the cal culation will be made over all possible values given the current selections, but disregarding the chart dimensions.
The total qualifier may be followed by a list of one or more field names within angle brackets. These field names should be a subset of the chart dimensions. In this case the cal culation will be made disregarding all chart dimensions except those listed, i.e. one value will be returned for each combination of field val ues in the listed dimension fields. Also fields which are not currently a dimension in a chart may be included in the list. This may be useful in the case of group dimensions, where the dimension fields are not fixed. Listing all of the dimensions in the group causes the function to work when the cycle or drill-down level changes.
In previous QlikView versions, the all qualifier may occur before an expression. This is equival ent to using \{1\} total. In such a case the calculation will be made over all the values of the field in the document, disregarding the chart dimensions and current selections. (The same value is al ways returned regardless of the logical state in the document.) If the all qualifier is used, a set expression cannot be used, since the all qualifier defines a set by itself. For legacy reasons, the all qualifier will still work in this QlikView version, but may be removed in coming versions.

Expression must not contain aggregation functions, unless these inner aggregations contain the total qual ifier. For more advanced nested aggregations, please use the Advanced Aggregation function in combination with cal culated dimensions, see Add calculated dimension... . See al so the examples of Nested Aggregations and Related Issues.

By default, the aggregation function will aggregate over the set of possible records defined by the selection. An alternative set of records can be defined by a set expression. See al so Set Analysis.
For a better understanding of how to use the aggregate qualifier (total), see Examples of Aggregate Qualifiers.

Basic Aggregation Functions

sum [[set_expression\}] [di stinct][t ot al [<fld \{, fld\}>]] expression)
Returns the aggregated sum of expression or field iterated over the chart dimension(s).

Examples:

```
sum(Sal es)
sum( Pri ce*Quant i t y)
```

sum(di stinct Price)
sum(Sal es) / sum(t ot al Sal es) returns the share within the selection
sum(Sal es)/ sum(t ot al <Mbnt h> Sal es) returns the share within the selection for each Month
sum(Sal es)/ sum(t ot al <Mbnth, Grp>Sal es) returns the share within the selection for each Month and $G r p$
sum(Sal es)/ sum(t ot al <Q r, Mbnt h, Week> Sal es) possible syntax for use with a time drilldown group
sum(\{ 1\} tot al Sal es) returns sal es within the entire document
sum(\{ BMD1\} Sal es) returns sales within the selection defined by bookmark BM01
sum $\{\$<$ Year $=\{2007,2008\}>\}$ Sal es) returns the sales for the current selection but just for the years 2007 and 2008, that is, the same as sum(if(Year=2007 or Year $=2008$, Sal es))

```
min([{set_expression}][ distinct ] [ total [<fld {, fld}>]] expression [,
rank]))
```

Returns the numeric minimum value of expression or field iterated over the chart dimension(s). Rank defaults to 1 which corresponds to the lowest value. By specifying rank as 2 the second lowest value will be returned. If rank is 3 the third lowest value will be returned and so on.

Examples:

min(Sal es)
min(Sal es, 2)
min(Price*Quantity)
min(tot al Sal es)
min(\{1\} tot al Sal es)
$\boldsymbol{\operatorname { m a x }}\left(\left[\left\{s e t _e x p r e s s i o n\right\}\right][\right.$ distinct] [total [<fld \{, fld\}>]] expression [, rank]))

Returns the numeric maximum value of expression or field iterated over the chart dimension(s). Rank defaults to 1 which corresponds to the highest value. By specifying rank as 2 the second highest value will be returned. If rank is 3 the third highest value will be returned and so on.

Examples:

```
\(\max (\) Sal es \()\)
max ( Sal es, 2 )
\(\max (\) Price* Quant ity )
\(\max (t\) ot al Sal es )
\(\max (\{1\}\) tot al Sal es \()\)
```

onl y([\{set_expression\}] [distinct] [total [<fld \{, fld\}>]] expression)
If expression or field iterated over the chart dimension(s) contain one single value, that val ue is returned, else NULL is returned.
Only can return numeric values as well as text values.

Examples:

onl y(Sal es)
onl y(Price*Quantity)
onl $y(t$ ot al Sal esman $)$

```
mode([{set_expression}][ distinct ] expression)
```

Returns the mode value, i.e. the most commonly occurring value, of expression or field iterated over the chart dimension(s). If more than one value is equally commonly occurring, NULL is returned. M ode can return numeric values as well as text val ues. M ode does not support the total qualifier.

Examples:

```
mode( Product )
mode( \(\mathrm{X}^{*} \mathrm{Y} / 3\) )
```

```
first sortedval ue( [{set_expression}][ distinct ] [ total [<fld {, fld}>]]
```

expression [, sort_weight [, n]])
returns the first value of expression sorted by corresponding sort-weight when expression is iterated over the chart dimension(s). Sort-weight should return a numeric value where the lowest value will render the corresponding value of expression to be sorted first. By preceding the sort-value expression with a minus sign, the function will return the last value instead. If more than one value of expression share the same lowest sort-order, the function will return null. By stating an n larger than 1 , you will get the nth value in order.

Examples:

first sortedval ue (PurchasedArticle, Order Date)
first sortedval ue (Pur chasedArticle, - Or der Date, 2)
first sort edval ue ($\mathrm{A} / \mathrm{B}, \mathrm{X}^{*} \mathrm{Y} / 3$)
first sortedval ue (di stinct PurchasedArticle, Order Date)
first sort edval ue (t ot al PurchasedArticle, Order Date)
first sortedval ue (tot al <Grp> Pur chasedArticle, Order Date)

String Aggregation Functions

M nString([\{set_expression\}][total [<fld \{, fld\}>]] expression)

If expression iterated over the chart dimension(s) contains one or more values with a string representation (any text or number), the first text value in text sort order is returned, else NULL is returned.

Examples:

```
    M nString( Currency )
    M nString( Left(abc,2 ) )
    M nString( t ot al Currency)
    M nString( <X> Currency )
MaxString([{set_expression}][ total [<fld {, fld}>]] expression)
```

If expression iterated over the chart dimension(s) contains one or more values with a string representation (any text or number), the last text value in text sort order is returned, else NULL is returned.

Examples:

MaxString(Currency)
MaxString(Left(abc, 2))
MaxString(tot al Currency)
MaxString(tot al <X> Currency)

```
concat([{set_expression}] [ distinct ] [ total [<fld {, fld}>]] expression[,
delimiter[, sort_weight]])
```

Returns the aggregated string concatenation of all values of expression iterated over the chart dimension(s). Each value may be separated by the string found in delimiter. The order of concatenation may be determined by sort-weight. Sort-weight should return a numeric value where the lowest value will render the item to be sorted first.

Examples:

```
concat( Code, ';' )
concat( First Name&' ' &Last Name, ',' )
concat( di stinct Code, ';' )
concat( t ot al Name, ';' , Date )
concat( t ot al <Grp> Name, ';' , Date)
```


Counter Aggregation Functions

```
count([{set_expression}][ distinct ] [ total [<fld {, fld}>]] expression)
```

Returns the aggregated total count of values from expression or field iterated over the chart dimension(s).
For this function it is all owed to use the distinct qual ifier in combination with the total qual ifier This combination is not valid for any other aggregation functions.

Examples:

coung(Sal es)
count (Price* Quant ity)
count (di stingct Price)
count (Sal es) / count (t ot al Sal es) returns sales within the selection

```
NumericCount([{set_expression}][ distinct ] [ total [<fld {, fld}>]]
expression)
```

Returns the aggregated numeric count of values from expression or field iterated over the chart dimension(s).

Examples:

Numer i cCount (Sal es)
Numer i cCount (Price* Quant ity)
NumericCount (distinct Price)
NumericCount (Sal es)/ NumericCount (t ot al Sal es)
Numer i cCount (Sal es)/ Numer i cCount (\{ 1\} t ot al Sal es) returns sales within the total
document
Text Count ([\{set_expression\}][distinct] [total [<fld \{, fld\}>]] expression)
Returns the aggregated text count of values from expression or field iterated over the chart dimension(s).

Examples:

Text Count (Sal es)
Text Count (Price* Quant ity)
Text Count (di stinct Price)
Text Count (Sal es) / Text Count (t ot al Sal es) returns sales within the selection
Text Count (Sal es)/ Text Count ($\{1\}$ t ot al Sal es) returns sales within the total document
Nul I Count ([\{set_expression\}][distinct] [total [<fld \{, fld\}>]] expression)
Returns the aggregated count of NULL values from expression or field iterated over the chart dimension(s).

Examples:

Nul I Count (Sal es)
Nul I Count (Price* Quant ity)
Nul I Count (di st i nct Price)
Nul I Count (Sal es) / Nul I Count (tot al Sal es) returns sales within the selection
Nul I Count (Sal es)/Nul I Count ($\{1\}$ t ot al Sal es) returns sales within the total document
M ssi ngCount ([\{set_expression\}] [distinct] [total [<fld \{, fld\}>]] expression)

Returns the aggregated count of missing values from expression or field iterated over the chart dimension(s). Missing values are all non-numeric values.

Examples:

M ssi ngCount (Sal es)
M ssi ngCount (if(Pri ce>10, Price, 'i nval id'))
M ssi ngCount (di stinct Price)
M ssi ngCount (Sal es) / M ssi ngCount (t ot al Sal es) returns sal es within the selection
M ssi ngCount (Sal es)/M ssi ngCount (\{ 1\} t ot al Sal es) returns sales within the total document

