

Python Geospatial Analysis with Qlik Sense AAI

REQUIREMENTS

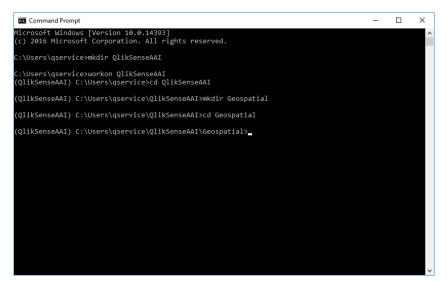
- Mandatory prerequisite: 'Python with Qlik Sense AAI Environment Setup'
- Qlik Sense June 2017+
- Python 3.5.3 64 bit
- Python Libraries: grpcio, scipy

LAYOUT

- Prepare your Project Directory
- Install Python Libraries and Required Software
- Setup an AAI Connection in the QMC
- <u>Copy the Package Contents and Import Examples</u>
- <u>Prepare/Start Services</u>
- Leverage Python Sentiment Analysis from within Qlik Sense

<u>ALERT</u>

Virtual environments are not necessary, but are frequently considered a best practice when handling multiple Python projects.

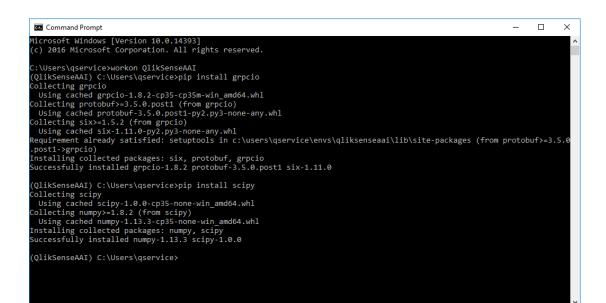

- 1. Open a command prompt (+'cmd')
- 2. Let's now make a new project folder called QlikSenseAAI, where all of our projects will live that leverage the QlikSenseAAI virtual environment that we've created. Let's place it under 'C:\Users\{Your Username}'. If you have already created this folder in another guide, simply skip this step.

Command Prompt	-	×
Microsoft Windows [Version 10.0.14393]		^
(c) 2016 Microsoft Corporation. All rights reserved.		
C:\Users\qservice>mkdir QlikSenseAAI		
C:\Users\qservice>		
		~

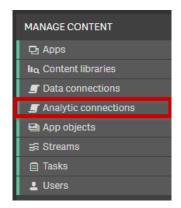
- 3. We now want to leverage our virtual environment. If you are not already in your environment, enter it by executing:
 - o workon QlikSenseAAI

Command Prompt	-	×
Microsoft Windows [Version 10.0.14393] (c) 2016 Microsoft Corporation. All rights reserved.		^
C:\Users\qservice>mkdir QlikSenseAAI		
C:\Users\qservice>workon QlikSenseAAI (QlikSenseAAI) C:\Users\qservice>		
		~

- 4. Now, ensuring you are in the 'QlikSenseAAI' folder that you created (if you have followed another guide, it might redirect you to a prior working directory, as seen below), execute the following commands to create and navigate into your project's folder structure:
 - o cd QlikSenseAAI
 - o mkdir Geospatial
 - cd Geospatial


Lets now bind our current working directory as the virtual environment's default. Execute (Note the period!):
setprojectdir.

Command Prompt	_	×
Microsoft Windows [Version 10.0.14393] (c) 2016 Microsoft Corporation. All rights reserved.		^
C:\Users\qservice>mkdir QlikSenseAAI		
C:\Users\qservice>workon QlikSenseAAI (QlikSenseAAI) C:\Users\qservice>cd QlikSenseAAI		
(QlikSenseAAI) C:\Users\qservice\QlikSenseAAI>mkdir Geospatial		
(QlikSenseAAI) C:\Users\qservice\QlikSenseAAI>cd Geospatial		
(QlikSenseAAI) C:\Users\qservice\QlikSenseAAI\Geospatial>setprojectdir .		
"C:\Users\qservice\QlikSenseAAI\Geospatial" is now the project directory for virtualenv "C:\Users\qservice\Envs\QlikSenseAAI"		
"C:\Users\qservice\QlikSenseAAI\Geospatial" added to C:\Users\qservice\Envs\QlikSenseAAI\Lib\site-packages\virtualenv_path_extensions.ptM		
(QlikSenseAAI) C:\Users\qservice\QlikSenseAAI\Geospatial>		
		v


- 6. We have now set the stage for our Geospatial Python environment. To navigate back into this project in the future, simply execute:
 - o workon QlikSenseAAI

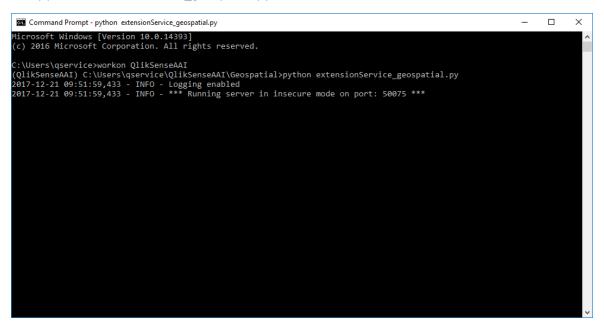
This will take you back into the environment with the default directory that we set above. To change the directory for future projects within the same environment, change your directory to the desired path and reset the working directory with 'setprojectdir .'

- - a. workon QlikSenseAAI
- 2. Execute the following commands (in my case, both requirements have already been met. If you have followed a previous guide, you have more than likely already installed grpcio):
 - a. pip install grpcio
 - b. pip install scipy
 - Note you can always download and install the wheel from <u>https://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy</u> and searching for <u>'scipy-1.0.0-cp35-cp35m-win_amd64.whl</u>'
 - ii. then you can execute:
 - 1. pip install c:\path\to\directory\scipy-1.0.0-cp35-cp35m-win_amd64.whl

1. Navigate to the QMC and select 'Analytic connections'

2. Fill in the parameters as follows – note that the 'Name' field will be how you will call your desired connection within the application editors in Sense (e.g. PythonGeospatial.ConvexHull()). The default port is 50051, but each analytics connection needs to have its own port. This module's port is set to 50075, but if you'd like to change that, simply search for '-port' in the 'extensionService_geospatial.py' file and change the 'default' parameter to an available port.

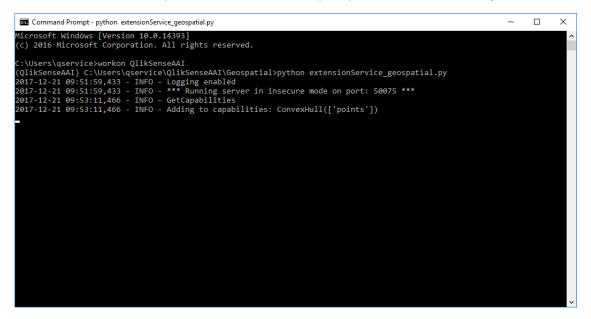
3. Click 'Apply', and you've now created a new analytics connection.


1. Now we want to setup our example geocoding service and app. Let's start by copying over the contents of the geocoding example from this packages zip file to the '..\QlikSenseAAI\Geospatial\' location, as so:

📙 🚽 📙 🚽 🛛 Geospatia	al			- 🗆	×
File Home Share	View				\sim
$\leftarrow \rightarrow \checkmark \uparrow $	sers > qservice > QlikSenseAAI > Geospatial >		✓ Ö Searc	h Geospatial	,
🕂 Downloads 🖈 ^	Name	Date modified	Туре	Size	
🚆 Documents 🖈	pycache	12/20/2017 9:43 PM	File folder		
📰 Pictures 🛛 🖈	logs	12/21/2017 8:04 AM	File folder		
ARIMA	📑 .gitignore	5/26/2017 3:16 PM	GITIGNORE File	1 KB	
Churn	浸 extensionService_geospatial	12/21/2017 9:06 AM	Python File	10 KB	
Geospatial	FuncDefs_geospatial	12/21/2017 8:03 AM	JSON File	1 KB	
QlikView Python	geospatialLogger	12/21/2017 9:22 AM	Text Document	126 KB	
Qiikview Python	💋 logger	5/26/2017 3:16 PM	CONFIG File	1 KB	
💻 This PC	README.md	5/26/2017 3:16 PM	MD File	13 KB	
E. Desktop	浸 ScriptEval_geospatial	12/20/2017 9:25 PM	Python File	3 KB	
Documents	ReverSideExtension_pb2	5/26/2017 3:16 PM	Python File	29 KB	
🖵 Downloads	🔁 SSEData_geospatial	5/26/2017 3:16 PM	Python File	4 KB	
b Music					
Pictures					
📑 Videos					
🏪 Local Disk (C:)					
💣 Network 🗸 🗸					
11 items					

2. After copying over the contents, go ahead and import the example qvf using the QMC.

PREPARE/START SERVICES


- 1. At this point the setup is complete, and we now need to start the extension service. To do so, navigate back to the command prompt. Please make sure that you are inside of the virtual environment. (*note that the command is 'workon QlikSenseAAI')
- 2. Once at the command prompt and within your environment, execute:
 - python extensionService_geospatial.py

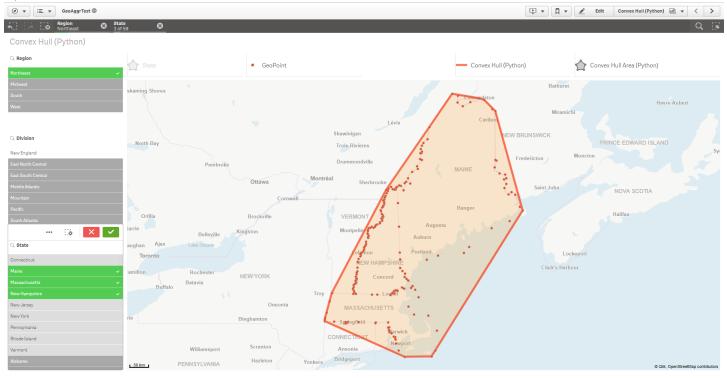
3. We now need to restart the Qlik Sense engine service so that it can register the new AAI service. To do so, navigate to windows Services and restart the 'Qlik Sense Engine Service'

9,		Services			_ □	x
File Action View	Help					
(+ →) 🗔 🖾 🤄						
🏩 Services (Local)	Services (Local)					
	Qlik Sense Engine Service	Name 🔺	Description	Status	Startup Type	Log ^
	· · · · · · · · · · · · · · · · · · ·	🔍 Qlik Logging Service	Qlik Loggin		Manual	.\Ac
	Stop the service	Qlik Sense Engine Service	Provides th	Running	Automatic (D	.∖Ac
	Restart the service	🔍 Qlik Sense Printing Service	Qlik Sense P	Running	Automatic (D	.∖Ac
		🥋 Qlik Sense Proxy Service	Manages Ql	Running	Automatic (D	.∖Ac
	Description:	🧠 Qlik Sense Repository Datab	Qlik Sense R	Running	Automatic (D	Loc
	Provides the analytical power of Qlik	Qlik Sense Repository Service	Manages pe	Running	Automatic (D	.∖Ac
	Sense to the clients.	🧠 Qlik Sense Scheduler Service	Manages sc	Running	Automatic (D	.∖Ac
		🎑 Qlik Sense Service Dispatcher	Qlik Sense S	Running	Automatic (D	.∖Ac
		🎑 Remote Access Auto Conne	Creates a co		Manual	Loc
		🎑 Remote Access Connection	Manages di		Manual	Loc
		🥋 Remote Desktop Configurat	Remote Des	Running	Manual	Loc
		Remote Desktop Services	Allows user	Running	Manual	Net _
		🧠 Remote Desktop Services U	Allows the r	Running	Manual	Loc =
		Remote Procedure Call (RPC)	The RPCSS	Running	Automatic	Net
		🧟 Remote Procedure Call (RP	In Windows		Manual	Net
		Remote Registry	Enables rem		Automatic (T	Loc
		Resultant Set of Policy Provi	Provides a n		Manual	Loc
		Routing and Remote Access	Offers routi		Disabled	Loc
		RPC Endpoint Mapper	Resolves RP	Running	Automatic	Net
		Secondary Logon	Enables star		Manual	Loc
		Secure Socket Tunneling Pr	Provides su		Manual	Loc 🗸
		<	Ш			>
	Extended Standard					

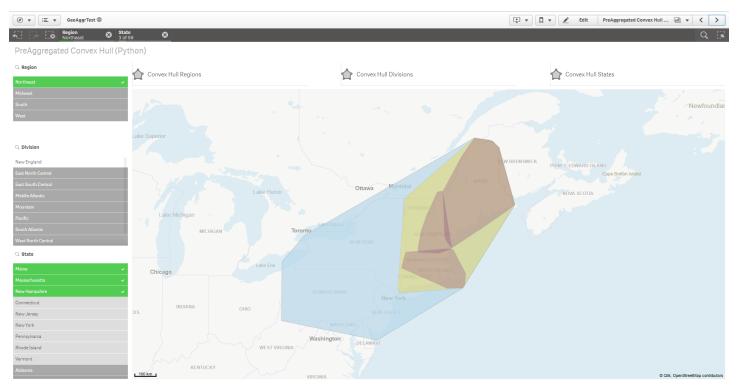
4. You should now see in the command prompt that the Qlik Sense Engine has registered the function ConvexHull() from the extension service over port 50075, or whichever port you've chosen to leverage.

LEVERAGE PYTHON GEOSPATIAL ANALYSIS FROM WITHIN SENSE

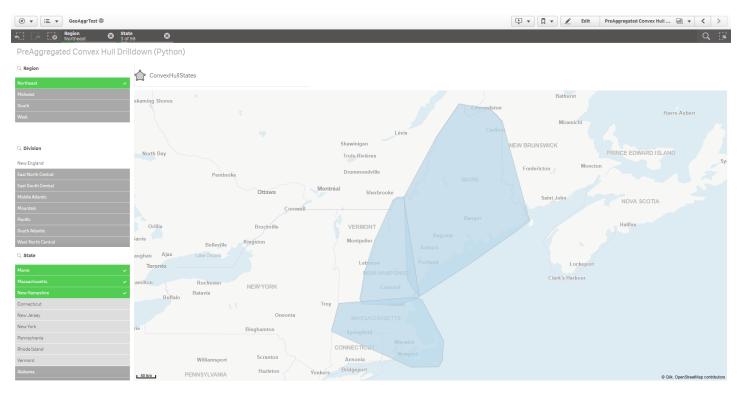
- 1. This Python Geospatial package at this point in time contains a single function called ConvexHull(). This algorithm calculates the containing boundary points of a series of points. This expression is scalar, and can be used on the backend to pre-aggregate these boundaries, or on the front end to create them dynamically. The expression is setup to accept a single parameter:
 - Points
 - i. A list of coordinates in the format of '[1,2],[3,4],[5,6],...'
- 2. The function will return a list of points in the format of: '[[1,2],[3,4],[5,6],...]'
- Note, to draw in GeoAnalytics, you will need to wrap the returned object with an additional '[]'
- 3. Example function call from the front end:
 - PythonGeospatial.ConvexHull(Concat(DISTINCT GeoPoint,',')) where GeoPoint is a Qlik GeoMakePoint() object
- 4. Example function call from the load script:


PreAggregatedRegions:

<mark>LOAD</mark>


'[' & PythonGeospatial.ConvexHull(Concat(GeoPoint,',')) & ']' as ConvexHullRegions, Region

RESIDENT Master GROUP BY Region; The attached demo app contains lat/long coordinates of the boundaries of all of the US States. The ConvexHull() function takes the outermost boundaries of all available points.


Dynamic Convex Hull:

Pre-aggregated Convex Hull by Region, Divison, State:

Pre-aggregated Convex Hull Drilldowns:

