

Python Geospatial Analysis with Qlik Sense AAI

REQUIREMENTS

• Mandatory prerequisite: ‘Python with Qlik Sense AAI – Environment Setup’

• Qlik Sense June 2017+

• Python 3.5.3 64 bit

• Python Libraries: grpcio, scipy

LAYOUT

• Prepare your Project Directory

• Install Python Libraries and Required Software

• Setup an AAI Connection in the QMC

• Copy the Package Contents and Import Examples

• Prepare/Start Services

• Leverage Python Sentiment Analysis from within Qlik Sense

PREPARE YOUR PROJECT DIRECTORY

1. Open a command prompt (+’cmd’)

2. Let’s now make a new project folder called QlikSenseAAI, where all of our projects will live that leverage the

QlikSenseAAI virtual environment that we’ve created. Let’s place it under ‘C:\Users\{Your Username}’. If you

have already created this folder in another guide, simply skip this step.

3. We now want to leverage our virtual environment. If you are not already in your environment, enter it by

executing:

o workon QlikSenseAAI

ALERT
Virtual environments are not necessary, but are frequently considered a best practice when handling multiple

Python projects.

4. Now, ensuring you are in the ‘QlikSenseAAI’ folder that you created (if you have followed another guide, it might

redirect you to a prior working directory, as seen below), execute the following commands to create and

navigate into your project’s folder structure:

o cd QlikSenseAAI

o mkdir Geospatial

o cd Geospatial

5. Lets now bind our current working directory as the virtual environment’s default. Execute (Note the period!):

o setprojectdir .

6. We have now set the stage for our Geospatial Python environment. To navigate back into this project in the

future, simply execute:

o workon QlikSenseAAI

This will take you back into the environment with the default directory that we set above. To change the

directory for future projects within the same environment, change your directory to the desired path and reset

the working directory with ‘setprojectdir .’

INSTALL PYTHON LIBRARIES AND REQUIRED SOFTWARE

1. Open a command prompt (+’cmd’) or continue in your current command prompt, ensuring that you are

currently within the virtual environment—you will see (QlikSenseAAI) preceding the directory if so. If you are

not, execute:

a. workon QlikSenseAAI

2. Execute the following commands (in my case, both requirements have already been met. If you have followed a

previous guide, you have more than likely already installed grpcio):

a. pip install grpcio

b. pip install scipy

i. Note you can always download and install the wheel from

https://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy and searching for

‘scipy-1.0.0-cp35-cp35m-win_amd64.whl’

ii. then you can execute:

1. pip install c:\path\to\directory\scipy-1.0.0-cp35-cp35m-win_amd64.whl

https://www.lfd.uci.edu/~gohlke/pythonlibs/#scipy
javascript:;
javascript:;

SET UP AN AAI CONNECTION IN THE QMC

1. Navigate to the QMC and select ‘Analytic connections’

2. Fill in the parameters as follows – note that the ‘Name’ field will be how you will call your desired connection

within the application editors in Sense (e.g. PythonGeospatial.ConvexHull()). The default port is 50051, but each

analytics connection needs to have its own port. This module’s port is set to 50075, but if you’d like to change

that, simply search for ‘-port’ in the ‘extensionService_geospatial.py’ file and change the ‘default’ parameter to

an available port.

3. Click ‘Apply’, and you’ve now created a new analytics connection.

COPY THE PACKAGE CONTENTS AND IMPORT EXAMPLES

1. Now we want to setup our example geocoding service and app. Let’s start by copying over the contents of the

geocoding example from this packages zip file to the ‘..\QlikSenseAAI\Geospatial\’ location, as so:

2. After copying over the contents, go ahead and import the example qvf using the QMC.

PREPARE/START SERVICES

1. At this point the setup is complete, and we now need to start the extension service. To do so, navigate back to

the command prompt. Please make sure that you are inside of the virtual environment. (*note that the

command is ‘workon QlikSenseAAI’)

2. Once at the command prompt and within your environment, execute:

• python extensionService_geospatial.py

3. We now need to restart the Qlik Sense engine service so that it can register the new AAI service. To do so,

navigate to windows Services and restart the ‘Qlik Sense Engine Service’

4. You should now see in the command prompt that the Qlik Sense Engine has registered the function ConvexHull()

from the extension service over port 50075, or whichever port you’ve chosen to leverage.

LEVERAGE PYTHON GEOSPATIAL ANALYSIS FROM WITHIN SENSE

1. This Python Geospatial package at this point in time contains a single function called ConvexHull(). This

algorithm calculates the containing boundary points of a series of points. This expression is scalar, and can be

used on the backend to pre-aggregate these boundaries, or on the front end to create them dynamically. The

expression is setup to accept a single parameter:

• Points

i. A list of coordinates in the format of ‘[1,2],[3,4],[5,6],…’

2. The function will return a list of points in the format of: ‘[[1,2],[3,4],[5,6],…]’

• Note, to draw in GeoAnalytics, you will need to wrap the returned object with an additional ‘[]’

3. Example function call from the front end:

• PythonGeospatial.ConvexHull(Concat(DISTINCT GeoPoint,',')) – where GeoPoint is a Qlik

GeoMakePoint() object

4. Example function call from the load script:

PreAggregatedRegions:

LOAD

 '[' & PythonGeospatial.ConvexHull(Concat(GeoPoint,',')) & ']' as ConvexHullRegions,

 Region

RESIDENT Master

GROUP BY Region;

The attached demo app contains lat/long coordinates of the boundaries of all of the US States. The ConvexHull()

function takes the outermost boundaries of all available points.

Dynamic Convex Hull:

Pre-aggregated Convex Hull by Region, Divison, State:

Pre-aggregated Convex Hull Drilldowns:

