
Q L I K . C O M

Managing your Analytics
lifecycle in Qlik Sense
Enteprise SaaS

Applying SDLC concepts to your Qlik Sense Enteprise SaaS
Tenant

V 1 . 0

Leigh Kennedy
Master Principal Enterprise Architect - GEAR

 Managing your Analytics lifecycle in QSE SaaS

1

TABLE OF CONTENTS

Introduction 3

SDLC Processes 3

Our vision for Qlik Cloud 3

Managing users in the Qlik Cloud platform 4

Your identity provider 4

Assigning system roles to identity provider groups 5

Assigning license entitlements to users 5

Assigning access to spaces and applications 5

Designing a groups framework for your SaaS SDLC 6

An SDLC environment for Qlik Application development 9

Our SDLC environment 9

SaaS and relative paths 10

Publish with replace 10

Alternative SDLC models 14

Assessing your applications 16

Data Profiling 16

Impact Analysis 17

Performance Evaluation 18

Tenants and your Software development lifecycle 19

Building context aware applications in SaaS 21

Integrating Qlik Sense enterprise SaaS with SDLC tooling 23

Building and unbuilding with Qlik Cli 23

Qlik app build – putting an app back together again 25

Encouraging re-use with qlik app build 26

Managing your Media library 28

Working with GitHub 30

 Managing your Analytics lifecycle in QSE SaaS

2

Appendix A: getSpaceDetails 33

Appendix B: appbuild.sh 36

Appendix C: appcreate.sh 37

Appendix D: distributeimage.sh 38

 Managing your Analytics lifecycle in QSE SaaS

3

Introduction
The majority of customers use some form of software development

lifecycle in their organisations. SDLC is a process for planning,

creating, testing, and deploying an information system1.

In the context of data and analytics, a robust SDLC is important to

follow, and this document aims to show techniques that can be used

to incorporate SDLC processes into a Qlik Sense Enterprise SaaS

environment.

SDLC Processes

While there are many different approaches to Systems development lifecycles such as agile or

Waterfall, there are several common processes that an SDLC always needs to cover. This

document will focus on the technical processes that need to occur within or interacting with a Qlik

Sense Enterprise SaaS tenant as part of a Systems development lifecycle. The aim of this

document is not to provide a strict SDLC process for customers to follow, rather it aims to provide

examples of how SDLC processes could work in a Qlik Sense Enterprise SaaS environment.

Our vision for Qlik Cloud

Qlik Sense Enterprise SaaS runs on Qlik Cloud, Qlik’s SaaS platform for our customer’s data

analytics and data integration needs. We see customers being able to manage their entire data

landscape and are continually explanding our cloud offerings. We have introduced new services

such as Hybrid Data Delivery and Qlik App Automation in 2021, as well as adding many new

features to Qlik Sense Enterprise SaaS. While there are many other areas where Qlik Cloud can be

integrated into your SDLC, this document will focus on Qlik Sense Enterprise SaaS.

 Managing your Analytics lifecycle in QSE SaaS

4

Managing users in the Qlik Cloud platform
Qlik Sense Enterprise SaaS is part of the Qlik Cloud platform, and therefore several user

management tasks are done at the platform level. These tasks include:

• Assignment of license entitlements

• Assignment of System roles

• Assigning and changing ownership of spaces and apps

Assigning access to spaces and the level of access to those spaces is specific to Qlik Sense

Enterprise SaaS and therefore is managed within the Hub environment.

In this section we will discuss recommended techniques for managing your users in a Qlik Sense

Enterprise SaaS environment.

Your identity provider

When customers set up their SaaS tenant, they have a choice of using Qlik Account based identity

or using their own identity provider. Qlik provides this choice to ease the transition to SaaS for

customers allowing them to get up and running Quickly.

However, for most customers using your own identity provider is recommended and provides much

greater control and flexibility over your SaaS environment that using Qlik Account will. Some of the

benefits of using your own identity provider include:

• Ability to enforce security policies such as password length and two factor authentication

• Ability to federate multiple identity sources (e.g. Active directory & google accounts)

• Ability to audit user logins and disable users in one place

• Ability to use groups for the purposes of assignment and authorization.

It is this last point which is of most relevance to this section; having users in groups allows us to

assign permissions to groups and manage this at the orgnisational level, rather than having to

manage users one by one in Qlik Sense Enteprise SaaS. The techniques discussed in this section

are dependent on groups to be implemented.

To be able to use groups in assignments, ensure you have selected ‘Enable the creation of groups’

in the Management Console:

 Managing your Analytics lifecycle in QSE SaaS

5

Assigning system roles to identity provider groups

When you enter the Users secton of the Management Console, you are presented with a list of

users and have the ability to assign roles directly to those users here. However to manage those

roles using groups, select the ‘Pemissions’ tab. This will show the roles available and by expanding

this you see tabs for users and groups. By selecting the ‘Groups’ tab, you can assign the role to

one of more groups.

Assigning license entitlements to users

While the ability to assign license entitlements to groups is on Qlik’s roadmap, this is not available

today. However, this is something that customer can build themselves. The process will be

different for each identity provider to get the list of users in each group but once this is obtained you

can assign users by posting to the “v1/licenses/assignments/actions/add” endpoint.

An example of doing this has been shared by a collegue here:

https://github.com/withdave/qlik/blob/master/snippets/qcs_create_user_assign_license.md

Assigning access to spaces and applications

 Managing your Analytics lifecycle in QSE SaaS

6

When managing space access, we can assign space roles at a user or group level. Groups appear

in the same list as users and the process of assigning space roles is the same.

Roles assigned to spaces then show as member of the space (blurred entries below are groups):

Designing a groups framework for your SaaS SDLC

The key to making groups integrate successfully with your SDLC is designing a group structure that

fits the roles and responsibilities that your SDLC has. This will be set up in your identity provider

rather than within Qlik’s cloud platform, however this is a key prerequisite to making this work

effectively for your organization.

 Managing your Analytics lifecycle in QSE SaaS

7

So why would we want to use groups from our identity provider rather than managing this within

Qlik? This is recommended for reasons such as organizational governance & centralized control,

but also allows the same security controls to be used throughout an organisation’s complete SDLC

lifecycle, not just the part that occurs in Qlik Sense Enterprise SaaS. For example, a

‘SalesDeveloper’ group may grant permissions to extract data from the organisations CRM systems

using that same group and the ability to save those extracts to the organisation’s cloud storage

location for Sales, which is then consumed by a Qlik Sense Application.

For example, if we create a groups framework around functions and business areas we might have:

Functional
groups

Consumer Developer Admin

Sales SalesConsumer SalesDeveloper SalesAdmin

Marketing MarketingConsumer MarkeningDeveloper MarketingAdmin

Shared SharedConsumer SharedDeveloper SharedAdmin

We would then map this framework to space roles. This varies between shared and managed

spaces. For Shared spaces we have:

Role
assignment

Consumer Developer Admin

Sales SalesConsumer =

‘Can view’
SalesDeveloper =

‘Can edit’
SalesAdmin =

‘Can manage’

Marketing MarketingConsumer

= ‘Can view’
MarkeningDeveloper

= ‘Can edit’
MarketingAdmin

= ‘Can manage’

Shared SharedConsumer =

‘Can view’
SharedDeveloper =

‘Can edit’
SharedAdmin =

‘Can manage’

 Managing your Analytics lifecycle in QSE SaaS

8

And for managed spaces we have:

Role
assignment

Consumer Developer Admin

Sales SalesConsumer =

‘Can contribute’
SalesDeveloper =

‘Can publish’ &
‘Can contribute’

SalesAdmin =

‘Can manage’

Marketing MarketingConsumer

= ‘Can contribute’
MarkeningDeveloper

= ‘Can publish’ &
‘Can contribute’

MarketingAdmin

= ‘Can manage’

Shared SharedConsumer =

‘Can contribute’
SharedDeveloper =

‘Can publish’ &
‘Can contribute’

SharedAdmin =

‘Can manage’

This is just a simplified example, and it is likely some organisations will have more than the three

functional roles shown here and many more business areas. But the principal is that we can design

a framework to allow us to manage our Qlik Sense Enterprise SaaS environment from our identity

provider.

It’s worth remembering that systems roles may give users the ability to circumvent these controls

(such as adding or modifying the space permissions, or changing ownership of apps and spaces).

Therefore to supplement the governance provided by groups, it’s recommended to integrated Qlik’s

event logging into your organisations auditing process.

 Managing your Analytics lifecycle in QSE SaaS

9

An SDLC environment for Qlik Application development
A common scenario Qlik sees with our Enterprise customers is a multi-teir environment consisting of

at a minimum Development/Test & Production. Many also have Sandbox environments for

prototyping and data Science use-cases and some also contain Regression environments where

but fixes can be made in parallel with future development efforts. We will cover these concepts and

how they would be used with Qlik Sense Enterprise SaaS in our hypothetical company here.

Our SDLC environment

Our environment consists of 5 tiers:

1. Sandbox – Developers can use their personal space as a

sandbox where they can prototype, while data scientists are able

to use the personal space to explore new projects.

2. Development – Development is a shared space used by

development teams to collaboratively develop an application, or

to take a prototype application duplicated from a user’s sandbox

and prepare it for release.

3. Test – This is a Managed space where application testers

validate the application is ready for release to production.

4. Production – This is a Managed space where users can

consume production applications and create self-service sheets

on top of the governed data model.

5. Regression – This is shared space where bug fixes can be

made to production in parallel with future development activities. Bug fixes made here need to

be merged into the current development stream.

While in this example we use a single space for each tier, customers may have multiple spaces in

each tier for different business areas or divisions.

There are two key features in Qlik Sense Enterprise SaaS that allow us to build out software

development lifecycle like this:

Space Types

Qlik Sense Enterprise SaaS
environments consist of 3 types of
spaces:

Personal Space: Your personal
space is your own private work
area in the cloud hub. You cannot
share apps from your personal
space and other users cannot
collaborate with you

Shared Space: Shared spaces
are used to develop apps
collaboratively and share them
with other users in the space. A
team might have a shared space
for the private development and
consumption of their own apps.

Managed Space: Managed
spaces are used for providing
governed access to apps with
strict access control both for the
app and the app data.

 Managing your Analytics lifecycle in QSE SaaS

10

• Relative paths

• Publish with replace

SaaS and relative paths

When accessing data sources in Qlik Sense enterprise SaaS there are 3 possible types of

 locations the data connection could reference:

• The user's personal space, e.g. [lib://SQL/MyTable]

• A specific named space, different to where the application resides e.g.
[lib://Production:SQL/MyTable]

• The same space that the application resides in, e.g. [lib://:SQL/MyTable]

(Note the ‘:’ before the data source name!)

When we want to use relative paths we will specify a colon before the connection name, but with no

space name before this. It is the ability to use relative paths that is a key feature which lets users

run various SDLC stages in the same SaaS tenant. An app set up this name would automatically

switch from the development to test connection when published to test, and then switch to the

production connection when published to prod.

Publish with replace

The second feature that we need for this is publish with replace. This ensures that when publishing

an application to production it replaces the application while ensuring any community content such

as user sheets or bookmarks are preserved. this capabilitie allows for lifecycles with multiple paths

to production, such as maintaining a development and bug fix stream in parallel.

When using the publish capability, applications are generally published without data and the

application is reloaded after publication to ensure the users see the appropriate data for their

function. This may not always be required for testing but generally will be required for production.

 Managing your Analytics lifecycle in QSE SaaS

11

Using a SDLC in Qlik Sense Enterprise SaaS
The following legend applies to the diagrams in this section:

Let’s look at some scenarios in our customer environment that we described earlier. This is by no

means the only approach to an SLDC implementation with Qlik Sense Enterprise SaaS, but one

that meets many of our customers needs. The goal here is to illustrate what is possible. This

example can and should be adapted as is required to meet your organisations needs.

A prototype that a developer has built is duplicated into development so

their team can collaborate on the application. The team makes changes

as needed using relative connections to the development data sources.

Once the development is completed and ready for testing, the application

is published to the Test managed space without data. The application will

then be reloaded ready for testing. Here the testers will review the

application and if necessary, inform the developers of problems who will address these issues and

re-publish for further testing.

When testing is successfully completed, the application can them

be published to production. Publish without data would be used

to ensure production users and not exposed to test data and the

application would be reloaded in production after publishing. The

users would be informed the release is complete and given

access to the application. The users would be able to use the

application in production including creating their own personal

sheets and content if they have the appropriate access levels to

do so.

 Managing your Analytics lifecycle in QSE SaaS

12

Next, the developers wish to work on an

updated version of the application. They start

by duplicating the prior version of the

application. The reason for this step, rather

than simply making changes to the

application in place, is in case there is a need

to make a bug fix in production while

development is ongoing for the next version.

As it turns out a bug is found in production. To work on

this without impacting ongoing development, the version

of the application that was published to production is

duplicated into the regression space.

The developers are able to address the bug and then

publish the fix to the test space using the publish with

replace functionality. The tester re-test the application

here and once testing is completed and it’s conformed

that the bug is fixed, the developers then republish the

fixed app to production using publish

and replace. After reloading the

application, the users and are to

access the fixed app. Their personal

sheets and other content are

preserved.

The developers are now ready to

continue their development. First, they

merge the changes required for the

production fix into their development

 Managing your Analytics lifecycle in QSE SaaS

13

application. They continue working on this new version of the application until it is ready to test.

When it is ready to test they publish to the Test space using publish with replace and reload the

application in test. They then hand it over to the testing team who evaluate the changes. In this

case the testers find and issue with the application and inform the developers it is not ready to

release to prod.

The developers address the issue raised by the testers and the publish to test again using publish

with replace. After reloading the testers re-test and this time approve the changes. The developers

then republish the application to production using publish with replace. After reloading, the users

can now access the updated application. Their community sheets and content is preserved.

So, putting it all together this diagram shows the full lifecycle for this customer:

 Managing your Analytics lifecycle in QSE SaaS

14

Alternative SDLC models

Many customers manage regression fixes in the same development stream as regular development

by using naming conventions. As we see in this example, during the period while a fix is being

implemented this needs to be coordinated so testers know what they are testing.

 Managing your Analytics lifecycle in QSE SaaS

15

And a third model we see involves model we see customers using involves separating the UAT and

QA testing phases into separate phases.

As we stated earlier these are examples and there is no one right way of doing this. We would

encourage customers to adapt this to meet how their SDLC processes work in their organization.

 Managing your Analytics lifecycle in QSE SaaS

16

Assessing your applications
Qlik Sense Enteprise SaaS provides a number of features to assist in developing and maintaining

you Qlik Sense applications. Whether you are building a new application or maintaining an existing

one, these tools will assist in ensuring your application is optimized and well understood. While

they do not replace the need for formal code reviews and assessments, using these tools will

enhance and accelerate your SDLC proceses.

Data Profiling

Often when building applications in Qlik Sense we do not have the metadata we need to determine

how best to use a particular data set. To assist with this, we have introduced data profiling into Qlik

Sense Enterprise SaaS. By profiling our data we can see Sample data, whether a field contains

nulls, distribution of data and for numerical data aggregation information. This information is useful

in determining measures and dimensions that can be used in your applications.

 Managing your Analytics lifecycle in QSE SaaS

17

Impact Analysis

Impact analysis shows the flow of data into

and out of apps and datasets in a lineage

graph. This visual representation of your

application assists in understanding the

lineage and dependencies your application

has.

For applications that generate QVDs which

are then subsequently used to create

another application we can see these

indirect dependiencies. Thus if we are making a change to a data source we can assess the

downstream implications and which other applications may require changes.

 Managing your Analytics lifecycle in QSE SaaS

18

Performance Evaluation

Another feature which Qlik provides to assist in reviewing your applications is the Performance

Evaluation feature. This looks at your application and highlights key areas which you can focus on

to improve performance and/or reduce the resource consumption of your application. It will identify

which objects are causing performance problems, so you know where to focus your efforts.

We can also compare against past performance evaluations. This is extremely useful which trying

to determine the impact of a change or to troubleshoot performance problems.

 Managing your Analytics lifecycle in QSE SaaS

19

Tenants and your Software development lifecycle
Sometimes our customers ask us about whether they need multiple tenants. Often this something

they assume they will need and/or to mirror their on-premise deployment. And regularly it is to align

with their software development lifecycle processes which are based on moving through

environments. However, as you will have seen none of the SDLC models shown here are based on

multiple tenants. This is because they are not required to meet these objectives. Qlik has designed

the spaces concepts to provide the flexibility needed to implement these disiplines in a single SaaS

tenant. However sometimes customers still have concerns. Here are some common concerns and

whether we see a need for multiple tenants or not:

• My development / testing could have a performance impact on my production apps: In

SaaS, Apps are assigned to an engine from a huge pool of engines based on available

resources at the time they are opened. If an engine is very busy, other apps will be assigned to

different engines. Our SaaS platform is handling thousands of customers and tens of thousands

of applications in each region at any one time and is constantly scaling up and down to handle

this.

• I test new OS & Software patches in Development first before releasing to production:

Qlik tests all changes extensively before releasing them into our SaaS Platform. This involves

extensive formal testing as well as releasing these changes to Qlik’s internal users before they

are released to our SaaS platform. When they are released to our SaaS platform they are

monitored 24x7 and and anomalies are investigated and if necessary backed out. We also are

able to release changes to our SaaS platform discretely, so we are able to see the impact of

individual changes. In the rare occurances where a problem occurs, we have usually identified

and recificed this before customers even become aware of it. If a customer did have separate

tenants, they would be running the same versions anyway as releases are made to the platform,

not the individual customers tenants.

• I have a custom developed extension I need to test: This is a case when a separate tenant

would be benefitial. Customers who are building their own custom extensions could look at

renaming the extension but this activity would likely be easier to manage with multiple tenants.

• I have different sets of users in different locations around the world: This is another case

where multiple tenants are a valid option. Depending on where your users are they may see

performance benefits from using a tenant located closer to them. The downside of this

approach however is some users may need to log into multiple tenants, or alternatively you may

need to duplicate some applications in multiple locations. An alternative approach to this would

 Managing your Analytics lifecycle in QSE SaaS

20

be to deploy Qlik Forts in those regions to host specific apps, while keeping the majority of your

apps in a single SaaS tenant.

• I need multiple tenants for security reasons: This is rarely necessary in our experience. The

only users who have unrestricted access as tenant administrators and due to separation of

duties, these users would rarely be involved in application development or business roles

relating to the applications. All other users are restricted to permissions assigned at the space

level, therefore access to dev/test/prod/etc. spaces would be managed the same as if there

were multiple environments. Access to use data connections and data files can be granted

without those users being able to modify the connections or data. And credentials can not be

retrieved once entered so even users who are tenant administrators can not gain access to

credentials.

• I want to test tenant level configuration changes: This may occur if you are planning to

change your identity provider, SMTP server, or other external dependencies. It is worth

speaking to Qlik about these needs as we may have roadmap items which will address these

(for example multiple IDP support is planned) or be able to provide you with an alternative

solution (such as a temporary tenant for one-off situations).

While we have tried to cover the most common scenarios we are asked about here there may be

others you are uncertain about or you may just wish to validate whether your requirements are best

suited to one or multiple tenants. In these cases Qlik’s Architects are available to assist you with

this.

 Managing your Analytics lifecycle in QSE SaaS

21

Building context aware applications in SaaS
In a model where we have a single development, test & production space similar to what we

showed earlier, it is easy to use relative connections in those spaces to ensure we are using the

appropriate connection based on the SLDC stage.

However, in larger organisations, there is sometimes a need to break this down further by subject

area or division, for example having Sales_Development, Finance_Development,

Shared_Development, etc. This complicates the model in that an application in Sales_Development

may need to access a data connection in Shared_Development. The only obvious way to achieve

this is by hard-coding the space, however this breaks our model. What we ideally want is a way to

determine which space our app is in, so we can then direct it to use Shared_Development in

development, Shared_Test in test, etc.

While there is currently no direct function to do this, it turns out we can achieve this by using Qlik’s

APIs. APIs can be accessed from a load script using a rest data connection to our tenant. It is

recommended to create this connection in a space developers can access with only the ‘data

consumer’ role, as exposing the connections details is not necessary and could constitute a security

risk.

First, we need to know what our application ID is. While not immediately obvious, the

DocumentName() function in fact returns the ID of our application. With our application id we can

query the ‘/api/v1/apps’ endpoint to find out details about our application including the space ID for

the applications space. We then in turn use ‘api/v1/spaces’ endpoint to get the name, type and

other details on the space. We have written a set of subroutines to do this which are in Appendix
A: getSpaceDetails.

So now we know the space we are in, we can dynamically build a connection or data-file path

related to the space we are in. For example, assuming I have a set of file paths that should be used

depending on whether I am in Dev, Test or Prod. I would be able to use the space information,

combined with naming conventions to construct a path depending on the space I am in:

 Managing your Analytics lifecycle in QSE SaaS

22

Or let’s say we have a library of subroutines we use in our apps. We may wish to load different

versions depending on the space we are in. We create a function that determines the right script

version based on where we are. In this case, dev uses the newest version:

The library has a trace statement at the beginning which prints it’s version, so when we use this in

our load script:

We get:

Now this is just an example and is dependent on your naming convention. For example, Production

may be defined by not having a suffix at all, and you may prefer to use prefixes. It depends on what

naming conventions work for your organization.

 Managing your Analytics lifecycle in QSE SaaS

23

Integrating Qlik Sense enterprise SaaS with SDLC tooling
Caution: Under Construction!

This section relies on the use of experimental APIs which

are highly likely to change in the near future. There are also

some gaps in functionality so what is covered here is

definitely not appropriate for all use-cases. Our goal is to

show where we are going and our thought processes. We

would advise caution before using this for business critical

purposes.

Building and unbuilding with Qlik Cli

Unbuild: To dismantle or deconstruct (something previously built).

Qlik sense applications (i.e. QVF files) are binary objects. When integrating with SCM tools, binary

files are a poor fit for several reasons:

• It’s not possible to see the scope of the changes made

• It’s not possible to compare to prior versions

• It’s not possible to see which individual components that have (or have not changed)

To address this, we have added the app unbuild command to qlik cli:

qlik app unbuild -h

Extracts generic objects, dimensions, measures, variables, reload script and connections from

an app in an engine into separate json and yaml files.

In addition to the resources from the app a config.yml configuration file is generated that

binds them all together.

Passwords in the connection definitions can not be exported from the app and hence need to be

handled manually.

Generic Object trees (e.g. Qlik Sense sheets) are exported as a full property tree which means

that child objects are found inside the parent´s json (the qChildren array).

 Managing your Analytics lifecycle in QSE SaaS

24

To use the unbuild command on and app, we first need the app id. You can either get that from the

url when the app is open, or by running ‘qlik app ls’ from the cli.

Now we can unbuild our app. Qlik app unbuild takes the app id and optionally a directory name. It

will generate it’s own name if not specified:

We can see the various parts of the application have been written to disk. The config.yml provides

a manifest of everything that has been extracted:

It’s worth reminding here that this is an experimental command and has some gaps. At the time of

writing Bookmarks, media and personal content are excluded.

We are now able to check these files into our source code repository, review the load script against

best practice, or any other actions we wish to take with the application code.

 Managing your Analytics lifecycle in QSE SaaS

25

Qlik app build – putting an app back together again

While there are a lot of reasons we may with to unbuild an application, many of those would be with

the expectation we can rebuild the application later. We can do this with the ‘qlik app build

command’. Qlik app build does not create an app, it requires a pre-existing app. Therefore, we first

create an app with the ‘qlik app create’ command and pass the app id for that app to ‘qlik app build’.

The full syntax of ‘qlik app build is.

Shown here:

While it is possible to create

application dependencies such as

connections with this command,

whether you want to do this really

depends on your goals. If you are re-

creating the application in the same

SaaS tenant, you probably won’t want to do that as the connections already exist.

There are some differences between the build and unbuild commands For example unbuild places

each object in it’s own file. Thisis very useful in determining which objects have changed.

However, to build an app the command expects a json list. Therefore we need to assemble the

various objects into a single file.

To simplify this I’ve create a script which builds an app based on the files created by ‘qlik app

unbuild’. Feel free to modify as needed. The script takes 1 parameter; the app directory (as

created by qlik app unbuild) and the new app name.This script ignores connections as I’m assuming

that is something we want to handle separately along with the creation of spaces (not covered in

this article). It also uses the default behaviour of reloading the app after it is built. If this is not what

you want, edit the script to add ‘--no-reload’ to the build command. So to run this script against the

unbuild we ran earlier (for the entitlement-analyzer), we would run:
./appbuild.sh entitlement-analyzer

 Managing your Analytics lifecycle in QSE SaaS

26

Encouraging re-use with qlik app build

While we have just shown using qlik app build to recreate an existing app, it is possible to use this

to create new apps also. One reason we may wish to do this is re-use. Consider that you develop a

script library, default themes and standard variables you want to use in your apps. We can create a

template app for this purpose:

Out Template app links to a library of subroutines we use as well as allows us to add custom

includes when we build the app. We will modify our appbuild script to process those custom

includes.

When out. Template is ready, we extract it to a template directory, e.g:

qlik app unbuild –app 1aa4da26-8ca3-47b9-9881-7bdb402c8696 –dir APP_TEMPLATE

We now have a template to use when creating new apps. Our new appcreate.sh script does the

following:

1. Create A new app in out SaaS tenant

2. Replaces the line ‘//INCLUDES_HERE’ with the contents of a file INCLUDES.QVS.

3. Uses the extracted template to build our app.

 Managing your Analytics lifecycle in QSE SaaS

27

So If I create a new app with this script and open it up, We can see it has used our template as

well as adding the custom includes;

/appcreate.sh MYNEWAPP

And the theme and color changes from our template are also present:

 Managing your Analytics lifecycle in QSE SaaS

28

Managing your Media library

I mentioned earlier that the qlik app build and unbuild do not handle images in the media library.

This can however be handled using the ‘qlik app media’ commands from qlik-cli.

Let’s say we have a standard in our apps which display our

corporate logo. We want to replace our old logo, which says

QlikView, with out new logo.

For now, I’m going to update the logo in all my loader apps (i.e. apps with ‘loader’ in the name).

To do this I need to:

• Find the apps I want to update:
qlik app ls --limit 100|grep -i $APPSEARCH|sed -e's/ .*//'

• For each app, check if the image is present in the app and. If so, remove it:
IMAGES=$(qlik app media list get / --appId $APPID | jq -r '.[] |

[.name]|@tsv')

 if grep -q "$IMAGE" <<< "$IMAGES"; then

 eval "qlik app media file rm /$IMAGE --appId $APPID"

• Add the new logo image to the app:
qlik app media file update '/$IMAGE' --appId $APPID --file '$IMAGE'

 Managing your Analytics lifecycle in QSE SaaS

29

See the script distributeimage.sh in the appendix impelments this logic. It takes the pattern to

match in the app name (in this case ‘*loader*’) and the file to distribute to the app:

We can now see the image in our apps have been updated:

 Managing your Analytics lifecycle in QSE SaaS

30

Working with GitHub

As we saw earlier the qlik app unbuild command deconstructs our qlik Sense app into it’s

constituent parts. However this will recreate all the files, not just the changed files. So would this

work with an SCM tool like GIT?

To test this I created a GitHub project called QCS and cloned it locally. I then ran and unbuild on

my Template App we usd earlier into the QCS git project:
qlik app unbuild -a 1aa4da26-8ca3-47b9-9881-7bdb402c8696 --dir ./QCS/TEMPLATE_APP

I then add this to git and commit it:

and push it to github:

So what happens if I make a change?

I modified my Template app by adding an extra variable and showing those variables, as well as an

image on my “About this App” sheet:

 Managing your Analytics lifecycle in QSE SaaS

31

Now I’ll unbuild the app again and run a git status to see what has changed:

I can see that the files I expect to have changed, did change, that is the script, the variables and the

sheet. But what about the app properties? Why has that changed? Running git diff it shows me:

Ok, so I ran a reload to populate my variables so that makes sense. What is the

‘qSavedInProductVersion’? I wasn’t sure, so looking it up and I found it is defined as: ‘Internal

property reserved for app migration. The app is saved in this version of the product”. So what has

happened is in the week or so between the time I created this app and made these changes, there

have been fixes and/or enhancements made to the engine. This is not likely to happen all the time,

but it useful information in knowing what has changed beside my app code itself.

 Managing your Analytics lifecycle in QSE SaaS

32

Now these are just a couple of examples of what we can do with qlik cli around our app lifecycle.

Some other ideas to consider include:

• Automatically comparing application code to copies stored in a git repository and updated git

when the app changes

• Running code scanners against application scripts to ensure standards compliance.

• Propogating enhancements and bugfixes to shared libraries used by apps.

We at qlik see huge potential here for our customers and partners to use and expand these

techniques and we at Qlik are looking to further enhancements in Qlik-cli which will make even more

SDLC and DevOps use-cases possible. I encourage you to share your innovations in the Qlik

Community as we would love to hear about them!

 Managing your Analytics lifecycle in QSE SaaS

33

Appendix A: getSpaceDetails

//Configuration
Set vu_tenant_fqdn = 'mytenant.ap.qlikcloud.com';
Set vu_rest_connection = 'Development:REST_ mytenant.ap.qlikcloud.com';
// End of Configuration

sub getSpaceId(vAppId, vSpaceId) //vu_tenant_fqdn, vu_rest_connection, vNextURL
 trace RUNNING:getSpaceId;
 if len('$(vSpaceId)') > 0 then
 trace vSpaceId already set;
 Exit Sub;
 end if

 //set connection to use for this tenant.
 LIB Connect To '$(vu_rest_connection)';

 // set the endpoint for app details
 Set baseURL= "https://$(vu_tenant_fqdn)/api/v1/apps/$(vAppId)";

 RestConnectorMasterTable:
 SQL SELECT
 "__KEY_root",
 (SELECT
 "spaceId",
 "_resourcetype",
 "__KEY_attributes",
 "__FK_attributes",
 (SELECT
 "__FK_custom"
 FROM "custom" FK "__FK_custom")
 FROM "attributes" PK "__KEY_attributes" FK "__FK_attributes")
 FROM JSON (wrap on) "root" PK "__KEY_root"
 WITH CONNECTION (
 URL "$(baseURL)?$(vNextURL)"
);

 AppDetails:
 Load
 If(len(spaceId)=0,'Personal',spaceId) as SpaceId
 Resident RestConnectorMasterTable
 WHERE NOT IsNull([__FK_attributes]);

 DROP TABLE RestConnectorMasterTable;

 let vSpaceId = peek('SpaceId');
 //trace spaceId = $(vSpaceId);
 drop table AppDetails;
end sub;

sub getSpaceDetails(vSpaceName, vSpaceDescription, vSpaceType)
 trace RUNNING:getSpaceDetails;
 let vAppName = DocumentTitle();
 let vAppId = DocumentName();
 Set vNextURL = '';
 set vSpaceId = '';

 if len('$(vSpaceName)') > 0 then
 trace vSpaceName already set;
 Exit Sub;
 end if
 call getSpaceId(vAppId, vSpaceId);
 if '$(vSpaceId)' <> 'Personal' then

 // set the endpoint for space details
 Set baseURL= "https://$(vu_tenant_fqdn)/api/v1/spaces/$(vSpaceId)";

 Managing your Analytics lifecycle in QSE SaaS

34

 //LIB Connect To '$(vu_rest_connection)';

 RestConnectorMasterTable:
 SQL SELECT
 // "id",
 "type",
 // "ownerId",
 // "tenantId",
 "name",
 "description",
 // "createdAt",
 // "createdBy",
 // "updatedAt",
 "__KEY_root"
 FROM JSON (wrap on) "root" PK "__KEY_root"
 WITH CONNECTION (
 URL "$(baseURL)?$(vNextURL)"
);

 [space]:
 LOAD
 [type] as spaceType,
 [name] as spaceName,
 [description] as spaceDescription
 RESIDENT RestConnectorMasterTable
 WHERE NOT IsNull([__KEY_root]);

 DROP TABLE RestConnectorMasterTable;

 let vSpaceType = peek('spaceType');
 let vSpaceName = peek('spaceName');
 let vSpaceDescription = peek('spaceDescription');
 drop Table space;
 else
 let vSpaceType = 'Personal';
 let vSpaceName = 'Personal';
 let vSpaceDescription = 'Personal';
 end if

end sub;

sub getLibPath(vPath)
 trace 'getLibPath - $(vSpaceName)';
 if '$(vSpaceName)' like '*Dev*' then
 trace This is a Dev space;
 set vPath='lib://common:DataFiles/library_1.2.QVS';
 elseif '$(vSpaceName)' like '*TEST*' then
 trace This is a Test space;
 set vPath='lib://common:DataFiles/library_1.1.QVS';
 elseif '$(vSpaceName)' like '*PROD*' then
 trace This is a Prod space;
 set vPath='lib://common:DataFiles/library_1.0.QVS';
 else
 trace Error: Non-standard space;
 end if
 trace $(vPath);
end sub;

sub getSpaceDatafileConn(vConn)
 trace 'getSpaceDatafileConn - $(vSpaceName)';
 if '$(vSpaceName)' like '*Dev*' then
 trace This is a Dev space;
 set vConn='lib://Development:DataFiles/';
 elseif '$(vSpaceName)' like '*TEST*' then
 trace This is a Test space;
 set vConn='lib://Test:DataFiles/';
 elseif '$(vSpaceName)' like '*PROD*' then

 Managing your Analytics lifecycle in QSE SaaS

35

 trace This is a Prod space;
 set vConn='lib://Production:DataFiles/';
 else
 trace Error: Non-standard space;
 end if
 trace $(Conn);
end sub;

Example usage:

let vSpaceName = null();
let vSpaceDescription = null();
let vSpaceType = null();

call getSpaceDetails(vSpaceName, vSpaceDescription, vSpaceType);
 trace ###################################;
 trace spaceName = $(vSpaceName);
 trace spaceDescription = $(vSpaceDescription);
 trace SpaceType = $(vSpaceType);
 trace ###################################;

let vPath = null();
call getLibPath(vPath);
trace Include: $(vPath);
$(Must_Include=$(vPath));

	

 Managing your Analytics lifecycle in QSE SaaS

36

Appendix B: appbuild.sh
Usage:

 ./appbuild.sh appdir

Example:

 ./appbuild.sh myapp

Appbuild.sh:

#!/bin/bash
APPDIR=$1
NEWAPP=$(uuidgen)
unset OBJECTS
first=1
myobjects="./$APPDIR/myobjects.json"
echo "[" > $myobjects
for f in $(ls $APPDIR/objects); do
 if ["$first" -eq "1"]; then
 cat $APPDIR/objects/$f >> $myobjects
 first=0
 else
 echo ","$'\n' >> $myobjects
 cat $APPDIR/objects/$f >> $myobjects
 fi
done
echo "]" >> $myobjects
OBJECTS=" --objects $myobjects"

while read line; do
 if [[${line} != *"objects"*]] && [[${line} != *"connections"*]] ;then
 conf=$(echo $line|sed -e "s/: / .\/$APPDIR\//")
 OBJECTS="$OBJECTS --$conf\\"$'\n'
 fi
done < $APPDIR/config.yml
#OBJECTS="$OBJECTS\\"$'\n'"$myobjects\\"$'\n'
#echo "qlik app build $OBJECTS -a $appid"

appid=$(qlik app create --attributes-name $NEWAPP --quiet)
eval "qlik app build $OBJECTS -a $appid"
exit;

 Managing your Analytics lifecycle in QSE SaaS

37

Appendix C: appcreate.sh
Usage:

 ./ appcreate.sh appname

Example:

 ./appcreate.sh MYNEWAPP

appcreate.sh:

#!/bin/bash

APPDIR=APP_TEMPLATE
NEWAPP=$1

mv APP_TEMPLATE/script.qvs APP_TEMPLATE/oldscript.qvs
cat APP_TEMPLATE/oldscript.qvs| sed -e'/INCLUDES_HERE/ r INCLUDE.QVS' -e
'/INCLUDES_HERE/d' > APP_TEMPLATE/script.qvs

unset OBJECTS
first=1
myobjects="./$APPDIR/myobjects.json"
echo "[" > $myobjects
for f in $(ls $APPDIR/objects); do
 if ["$first" -eq "1"]; then
 cat $APPDIR/objects/$f >> $myobjects
 first=0
 else
 echo ","$'\n' >> $myobjects
 cat $APPDIR/objects/$f >> $myobjects
 fi
done
echo "]" >> $myobjects
OBJECTS=" --objects $myobjects"

while read line; do
 if [[${line} != *"objects"*]] && [[${line} != *"connections"*]] ;then
 conf=$(echo $line|sed -e "s/: / .\/$APPDIR\//")
 OBJECTS="$OBJECTS --$conf\\"$'\n'
 fi
done < $APPDIR/config.yml

appid=$(qlik app create --attributes-name $NEWAPP --quiet)
eval "qlik app build $OBJECTS -a $appid"
eval "qlik app update $appid --attributes-name $NEWAPP"

rm APP_TEMPLATE/script.qvs
mv APP_TEMPLATE/oldscript.qvs APP_TEMPLATE/script.qvs
exit;

	

 Managing your Analytics lifecycle in QSE SaaS

38

Appendix D: distributeimage.sh
#!/bin/bash

APPSEARCH=$1

IMAGE=$2
APPLIST=$(qlik app ls --limit 100|grep -i $APPSEARCH|sed -e's/ .*//')

#IFS=$'\n'
for APPID in $APPLIST; do
 echo $APPID
 IMAGES=$(qlik app media list get / --appId $APPID | jq -r '.[] | [.name]|@tsv')
 if grep -q "$IMAGE" <<< "$IMAGES"; then
 echo "Deleting old image"
 eval "qlik app media file rm /$IMAGE --appId $APPID"
 sleep 1s
 fi
 eval "qlik app media file update '/$IMAGE' --appId $APPID --file '$IMAGE'"
 echo "Images in App $(qlik app get $APPID |jq -r '.attributes.name') ($APPID): $(qlik
app media list get / --appId $APPID --show recursive | jq -r '.[] | [.name]|@tsv')"
done
	

 Managing your Analytics lifecycle in QSE SaaS

39

© 2020 QlikTech International AB. All rights reserved. All company and/or product names may be trade names, trademarks and/or registered trademarks of the respective owners
with which they are associated.

About Qlik
Qlik’s vision is a data-literate world, where everyone can use data and analytics to improve decision-
making and solve their most challenging problems. Qlik provides an end-to-end, real-time data
integration and analytics cloud platform to close the gaps between data, insights and action. By
transforming data into active intelligence, businesses can drive better decisions, improve revenue and
profitability, and optimize customer relationships. Qlik does business in more than 100 countries and
serves over 50,000 customers around the world. 
qlik.com

