
QLIKVIEW SCALABILITY OVERVIEW

QlikView Technology White Paper Series

www.qlikview.com

April 2011

 | Page 2

Table of Contents

Introduction	 3

The 4 Dimensions of QlikView Scalability	 4

	 Size of Data	 4

	 Number of Users	 11

	 Number of Applications	 15

	 Application Design	 20

Why Architecture Matters to Scalability	 23

The QlikView Scalability Center & Best Practices	 25

Conclusion	 37

 | Page 3

Introduction

As the needs increase to deploy a system to larger numbers of users, containing larger volumes
of data and larger numbers of applications, often in different geographies, scalability becomes
increasingly important.

When planning a QlikView deployment for either the first time or an expansion to an existing
deployment, a key question always arises: what machines do I buy and when? The answer to
this question can be very simple or quite complex depending on a range of considerations, chief
among them are:

•	 The size and nature of source data.
•	 The number of concurrent users.
•	 The way that data and applications are organized in a QlikView deployment.
•	 GUI design and overall application design.

These 4 general areas –

•	 Size of Data
•	 Number of Users
•	 Number of Applications
•	 Application Design

are the driving dimensions through which we will discuss QlikView’s ability to scale.

We will discuss the challenges associated with each dimension, the approach QlikView
recommends and some real-life examples from our customer community.

This paper outlines the technical capabilities, real-world examples and the trade-offs associated
with understanding the predictable and proportional response of a QlikView deployment to the
challenges associated with scalability.

We will define scalability as “the ability to retain performance levels when adding additional data,
users, and applications and when changing the applications’ designs.”

This paper will examine scalability from an end-user’s perspective (i.e. end-user performance)
rather than a server-side data reload perspective.

We will also take a look at Scalability Center results that examine whether QlikView scales
predictably under typical usage scenarios and will examine QlikView’s response to common
deployment scalability factors.

It is recommended to review the QlikView Architecture and System Resource Usage Technical
Brief in order to get a fundamental understanding of the various QlikView components and how
they utilize various hardware resources such as RAM and CPU.

QlikView’s performance
scales uniformly with

data and users.
QlikView scales uniformly
as more data is added to
the application and more

users access the application.
Terabytes of data have

been addressed in QlikView
and many thousands of
concurrent users have

been shown to repeatedly
access deployments without

interruption of service.

 | Page 4

The Four Dimensions of QlikView Scalability

SIZE OF DATA:

It’s a well known fact that the data volumes organizations are generating are increasing at a
rapid pace. This is no different in Business Intelligence (BI). Even as volumes increase, there
is an increased demand on BI systems to continue to provide end users with a high performing
and predictable experience. For traditional query-based solutions, this has resulted in a push for
faster and more expensive database query acceleration technology, with mixed results. For new
technology solutions that use an in-memory solution like QlikView, it’s particularly important to
understand the system’s reliance on Random Access Memory (RAM) resources.

THE QLIKVIEW APPROACH:

Fundamentally, it’s important to note that QlikView’s performance scales uniformly with
data loads. As more data is added to a QlikView application, then a corresponding addition of
a combination of RAM and CPU capacity allows end-user performance to be maintained in a
predictable fashion.

QlikView relies heavily on RAM due to its in-memory architecture. Please refer to the QlikView
Architecture and System Resource Usage Tech Brief which takes a close look at the role that
RAM plays in a QlikView deployment.

Let’s take a look at the importance of considering adding both RAM and CPU capacity in order
to maintain end-user performance when data sizes increase.

As an in-memory based technology, as more data is added to an application it’s pretty obvious
why more RAM capacity will be needed in order to maintain performance levels. Even though
QlikView will utilize the operating system’s virtual memory capability (i.e. using the hard drive
to ‘act’ as RAM), the performance degradation associated with this option may result in an
unacceptable user experience. QlikView takes advantage of the fact that RAM costs are
continuously being driven lower, so adding more RAM capacity owing to an increase in data
volumes requires a relatively small capital outlay. QlikView also employs a sophisticated data
compression algorithm (as outlined in the QlikView Architecture and System Resource Usage
Tech Brief) to allow for an extremely efficient usage of available RAM resources for data
analysis. Compression ratios can range from 20% to 90%, depending on the nature of the data
being compressed.

It may be less obvious why CPU capacity must be considered when scaling up data. As
stated in the QlikView Architecture and System Resource Usage Tech Brief, CPU cycles are
used whenever a user interacts with a QlikView application. For example, whenever a chart is
recalculated or whenever a new aggregation is requested, CPU cycles are consumed. For any
given application, the amount of time needed to respond to an end-user request is a function
of the CPU’s ability to process the request, perform a recalculation on the data and redraw the
UI. Therefore, as more data is added to an application and in cases where a new aggregation

 | Page 5

needs to be performed, the CPU will be required to perform recalculations over larger slices of
data, resulting in more required CPU cycles.

Figure 1 below highlights that as more data is added to an application, a uniform increase
in both CPU and RAM capacity will ensure that performance levels are maintained to an
acceptable level.

Figure 1

As will be seen from the section on application design, understanding the performance
characteristics of any general QlikView application does not follow a simple formulaic approach,
and as such one cannot simply state the ‘upper limit’ for the amount of data that QlikView can
handle.

However, experience of many deployments has allowed us to provide a rough calculation
of the RAM needed for a given source data size and expected usage numbers. Please note
that this calculation should be treated as a generalized, averaged estimation for the purpose
of illustration.

RAM = (RAMuser × No. users) + RAMinitial

Where

RAM〗initial = QVWsizedisk × FileSizeMultiplier; this is the initial RAM footprint for any application

RAM〗user =〖RAMinitial × userRAMratio; this is the RAM each incremental user consumes

QVWsizedisk = SourceData × (1 - CompressionRatio); this is the size, on disk, of a
QlikView file

Assumptions:

userRAMratio: range between 1%–10%

FileSizeMultiplier: range between 2–10

CompressionRatio: range between 20%–90%

End User Performance scales uniformly
with CPU capacity and number of users

End User Performance scales uniformly
with RAM and number of users

P P

CPU
#users

RAM
#users

 | Page 6

No. users is the number of concurrent users hitting a system, not the total number of supported
users. Example:

SourceData 50GB

CompressionRatio 90%

FileSizeMultiplier 4

userRAMratio 5%

No. of concurrent users 30

QVWsizedisk = 50GB × (1 - 0.9) = 5GB

RAMinitial = 5GB × 4 = 20GB

RAMuser = 20GB × 5% = 1GB

Therefore, the RAM footprint to support 30 concurrent users in this deployment would be:

 RAM = (1GB × 30) + 20GB = 50GB

A more pragmatic approach is to understand the best practices techniques for using the various
QlikView platform components to provide for a very large data size addressing while maintaining
very fast user response characteristics. These techniques are detailed below:

LINEAR SCALING FROM A KNOWN DATA MODEL AND UI DESIGN:

A best practice approach to understanding how much additional hardware resources may
be needed for any specific deployment when new data (and user numbers) are added to
an application is to first measure the performance characteristics from a small deployment
with a known, stable data model and a production-level User Interface. In most deployments
where QlikView applications have expanded to accommodate very large data sets and/or user
populations, the performance characteristics from the initial, smaller-scale deployment were
examined as a ‘benchmark’ from which to extrapolate the data to determine the hardware
requirements for larger deployments. This method has proven to be very successful and
accurate. In every case, these deployments have shown to scale linearly with additional data
(and user) loads. At a very simplified level, the steps are outlined below:

1.	 Measure the performance characteristics of a small deployment (i.e. measure end-user
response times to new aggregation requests or new search paths).

2.	 Record the CPU and RAM usage in this environment.
3.	 Perform a linear extrapolation using the expected additional data and/or user loading on

the application to determine needed additional RAM and CPU capacity.

 | Page 7

INTELLIGENT DISTRIBUTION OF DATA: HORIZONTAL SCALING:

When it comes to handling expanding volumes of data, a best practices approach to breaking
up and distributing data is preferable to trying to utilize a single QlikView application to store and
analyze all data. Take the example of worldwide sales data: for a small company it might make
sense to use just one QlikView application to analyze and present data from every country it
does business in. However, for larger organizations this approach is impractical due to larger
data volumes and larger number of users.

In these environments the QlikView Publisher product is used to take a source application (e.g.
worldwide sales) and break it up into smaller applications (e.g. country-specific applications)
which contain smaller data footprints. These ‘reduced’ applications are then accessed using
clients via a QlikView Server.

Horizontal scaling refers to adding more server resources, either virtually or physically, to a
deployment. QlikView Server deployments scale horizontally in a straightforward manner by
adding new server machines and implementing a clustering and load balancing strategy. In
the scenario depicted below in figure 2, one might have a single QlikView Server dedicated to
each department, and each containing the relevant business applications pertinent to all groups
within that department.

Using a horizontal scaling strategy in this way, end-user performance can be maintained or
improved while scaling up to very large data needed for analysis.

Figure 2

QVS: Finance QVS: Operations

QlikView Access Point

Fin_ops.qvw
300MM rows

Fin_AP.qvw
30MM rows

OPS_sales.qvw
50MM rows

OPS_mktg.qvw
120MM rows

OPS_Inventory.qvw
80MM rows

OPS_Spend.qvw
100MM rows

QlikView PublisherQlikView
Developer

CompanyData.qvw
680MM rows

Front End

Back End

Ajax

 | Page 8

In addition, QlikView deployments support the notion of a multi-staged data architecture
approach. This approach, when coupled with a horizontal scaling strategy is an effective means
by which to scale up to many billions of rows of data, and beyond, while maintaining acceptable
end user performance characteristics.

Figure 3 shows an example of a staged data architecture in QlikView. When combined, the
total data being addressed by QlikView in this scenario might run into many billions of rows of
data, however by employing a ‘staged’ approach to handling the data, and coupling it with a
horizontal scaling approach, reliable end-user performance can be maintained.

Figure 3

SCALING ‘UP’: VERTICAL SCALING:

Vertical scaling refers to the approach whereby more hardware resources (i.e. CPU and RAM)
are added to the same machine to accommodate an increase in data and users.

Vertical scaling is a relatively more straightforward task than horizontal scaling (this document
is not intended as a discussion of the merits of both), however QlikView deployments can take
advantage of a vertical scaling of RAM and CPU capacity in a single machine to accommodate
larger volumes of data. Again, this is a linear and predictable relationship: as more data is

Data
Warehouse

DATABASE

ERP

QVD Generator QVD Generator QVD Generator QVD Generator

QVD Files QVD Files QVD Files QVD Files

Dashboard Dashboard

Analysis App Analysis App

So
ur

ce
 L

ay
er

Ex
tr

ac
t L

ay
er

Q
V

D
 L

ay
er

Pr
es

en
ta

ti
on

 L
ay

er

Databases and other
data sources

Qlikview applications that
extract and (optionally)
denormalize source tables
into Qlikview QVD �les.

QVD Files- QlikView data �le
layer. QVDs can be one-to-one
match with source tables or
denormalized “views” of
several source tables.

Production applications built
from QVDs in the layer above.
No direct database queries
are needed in these applications
and re-use of common QVDs
is promoted. Some understanding
of data is still required to
optimize application performance.

 | Page 9

added to an application, end user performance is maintained by the linear addition of RAM and
CPU capacity to the machine.

INTELLIGENT LOADING OF DATA: INCREMENTAL RELOADS:

An effective strategy for dealing with increasing volumes of data is to employ incremental
reloads. While this topic is more pertinent for a discussion on data modeling strategies rather
than end-user scalability, it’s worth mentioning here briefly as it highlights an important
characteristic of actual deployed QlikView applications.

Incremental loads are when QlikView will only load - from source data - the newest data or
latest transactions. These can be performed as part of the regularly scheduled reload process
and are used as part of a multi-staged data environment that utilizes QVD files. The benefit of
using incremental reloads is that data can be added to any given application far more quickly,
limiting the amount of time needed for data refresh, thus providing end users with much quicker
access to the latest data.

Figure 4

TECHNICAL CASE STUDY: LARGE APPAREL RETAILER, 70GB OF DATA:

When a large apparel retailer in the US Midwest needed a high performing, scalable business
discovery platform, they selected QlikView. As a multi-channel retailer involved in both
designing and selling men’s and women’s apparel, this company serves markets in multiple
countries around the world, generating revenues in the many billions of dollars. Like many
similar organizations, this company was challenged with their existing traditional business
intelligence tools, growing frustrated with the lack of flexibility and the slow time-to-response
from the business user’s requests for new reports and fresh analysis.

The company chose QlikView to empower over 200 concurrent business users in inventory
planning and forecasting to gain access to the over 500 million rows of data that simplifies their
decision-making process.

Incremental data loading

500MB

200MB

250MB

All data loaded (500MB)

Data Analyzed: 500MB

All data loaded: 200MB

Data Analyzed: 700MB

All data loaded: 250MB

Data Analyzed: 950MB

T = 0 T = 1 T = 2

 | Page 10

Using a multi-tiered approach to their deployment architecture, QlikView Publisher resides
within a secure back end and is responsible for taking 15 source qvw files to perform nightly
reloads of data, total size of 70GB, from a variety of source databases including DB/2,
Microsoft Excel and Oracle. Average nightly reload time is 4 hours. This is the beginning of the
‘staged data’ environment, where 5 qvd files of sizes varying 250MB to 60GB are created as
intermediate data file stores. These files include data broken down by functional area and act
as secure binary repositories from which the end user documents within the presentation layer
extract data. The presentation layer is where the QlikView Servers reside. In this deployment,
4 QVS’s were deployed in a clustered environment on 4 machines, 3 with 64 CPU cores and
256GB of RAM, and one with 32 CPU cores and 128GB of RAM, each running Windows
Server 2003.

This company also engineered the capability to interface the mainframe scheduler into the
QlikView Publisher so that in effect the mainframe scheduler triggered QlikView tasks based on
file availability on the mainframe.

Figure 5

64 Core, 256GB RAM; Win 2003

Source and Extract
Layer

Intermediate data
�le store (QVD Layer)

Presentation
Layer

64 Core, 256GB RAM; Win 2003 32 Core, 128GB RAM; Win 2003 64 Core, 128GB RAM; Win 2003

5 QVD’s
Total 70GB

15 QVW’s
Total 70GB

250MB

QlikView Publisher

5GB 3GB 1.75GB 60GB

Dashboard
Dashboard

Analysis Analysis

Report
Dashboard

Dashboard

Analysis Analysis

Report
Dashboard

Dashboard

Analysis Analysis

Report
Dashboard

Dashboard

Analysis Analysis

Report

4 hours, nightly

 | Page 11

Number of Users

As companies grow, the demands on all IT infrastructure assets increase as a result of more
people needing access to IT applications and resources. QlikView applications are no different.
Not only have we seen increased user demand on deployed applications because of company
growth, we’ve also seen significant demand increases as adoption of a QlikView solution takes
hold within an organization.

IT departments are tasked with understanding the scaling characteristics of their applications
and need to know that their vendors’ solutions will respond predictably and proportionally to
increases in hardware resources to accommodate the new demand.

THE QLIKVIEW APPROACH:

Fundamentally, it’s important to note that QlikView’s performance scales uniformly with
user loads.

As has been seen with all deployments, as new users are added to an existing system, the
performance impact is predicable and proportional and can be addressed by the addition
of more resources such as CPU capacity and RAM.

As was stated in the preceding section on data scaling, it’s important to understand the impact
that adding both CPU capacity and RAM will have in order to maintain optimal end-user
performance as more concurrent users stress the system.

Again, QlikView utilizes an in-memory data store in which all data that is analyzed in any given
QlikView session will reside. As noted in the QlikView Architecture and System Resource Usage
Tech Brief and in the RAM calculator in the Size of Data section in this paper, when the first
end user opens a QlikView document, the amount of RAM needed is usually between 2x – 10x
the size of the application on disk. This is to accommodate overhead such as indexes, data
associations and so on. The addition of concurrent users causes more RAM to be allocated. Even
though core aggregations are shared across all users by means of a central cache, each individual
user requires his/her own session state, which requires additional RAM to be allocated.

As was seen in the QlikView Architecture and System Resource Usage Tech Brief and in the
RAM calculator in the Size of Data section in this paper, a general rule of thumb can be used
for estimating the per-user additional overhead associated with new concurrent users (i.e. add
1-10% of RAM above that used by the first user).

For example: A 1GB .qvw document uses around 4GB in RAM for the first user
(based on a multiplier factor of 4). User number two may increase this by around
10% as their calculations get cached, resulting in a required RAM footprint of
4.4GB. User number 3 requires a further 10%, increasing the footprint to 4.8GB,
and so on.

 | Page 12

As is discussed in the QlikView Architecture and System Resource Usage Tech Brief and
also in the later section on Application Design in this paper, it’s important to note that
the density of the data and the data model structure, along with the UI design contribute
significantly in the determination of the overall RAM footprint

In summary, a properly designed QlikView application will not take up more than 1% to 10%
of the RAM usage for each additional user after the first.

CPU capacity needs to also be considered when expecting an increase is concurrent user
loading. As stated previously in the QlikView Architecture and System Resource Usage Tech
Brief, CPU cycles are used whenever a user makes a request in the application for a new
aggregation, new drill-down path, redraw of the UI based on a new chart interaction and so on.
As a result, CPU capacity needs to be added when more concurrent users are expected. As
will be seen in the section covering the Scalability Center results, end-user performance can be
maintained with the addition of processing capacity (and a corresponding increase
in RAM).

Figure 6 below highlights that as more concurrent users are requesting access to an
application, a uniform increase in both CPU and RAM capacity will ensure that performance
levels are maintained to an acceptable level.

Figure 6

As an increasing number of users make requests to an application with a finite number of cores
or CPU’s available, performance degradation naturally occurs. This is most commonly offset
by adding more processing capacity by scaling horizontally using a clustering and load
balancing technique.

End User Performance scales uniformly
with CPU capacity and number of users

End User Performance scales uniformly
with RAM and number of users

P P

CPU
#users

RAM
#users

 | Page 13

CLUSTERING AND LOAD BALANCING:

Clustering refers to the ability to link multiple servers together within a single entity called a
‘cluster’. Load Balancing refers to the ability to distribute and share resources (e.g. processor
capacity and memory) across the cluster in an even and defined way.

Clustering and load balancing are effective techniques for scaling up the number of users who
need to use a QlikView application without a corresponding reduction in end-user performance.
A QVS cluster (which uses QlikView AccessPoint as the load balancer) will automatically
apportion a new user request to a server that has a lower current resource demand (i.e. lower
processor usage or memory usage) so that the user’s experience can be maximized. It is
achieved by simply adding servers into a QVS cluster. It also ensures very high availability for
users as automatic fail-over is another component of a clustered QlikView Server environment.
Figure 7 below shows an example of a typical QVS clustered environment.

Figure 7

TECHNICAL CASE STUDY: LARGE MIDWESTERN MANUFACTURING COMPANY: MORE
THAN 8000 USERS:

When a major manufacturing company in the US Midwest needed a high performing, scalable
business intelligence platform, they selected QlikView. With billions of dollars in worldwide sales,
thousands of innovative products used in dozens of diverse markets, in multiple countries around the
world, and with thousands of employees, this company was challenged with their current business
intelligence tools, inflexible Six Sigma project demands and a need to provide product margin
analyses. With an increased need to show responsiveness to business demands, the organization
deployed QlikView to more than 8,000 users across many functions.

Drawing data from Teradata, SQL Server, DB2 and Sybase, the company now uses QlikView
for sales analysis, supply chain analysis, IT analysis, and Six Sigma analysis.

Qlikview Server
(64-bit)

Qlikview Server
(64-bit)

Qlikview Server
(64-bit)

Qlikview Publisher
Server 1 - nightly jobs

• Shared QVW’s
• Ajax pages
• Source document

SAN or shared disk

QlikView Access Point

Qlikview Publisher
Server 2 - hourly jobs

Internet browser
or plug-in client

 | Page 14

15 production QlikView Servers are used (with 4 development servers), and 11 QlikView
Publisher instances handle all data reload and distribution tasks.

There are many hundreds of QVWs in production. The most widely used is the application
for sales analysis and reporting for reps in the field. This application is looped and distributed
to 8,000+ agents every Monday morning. It is tied to an Active Directory database with over
400,000 employees in it. Largest QVW is 600MB on disk.

For the sales analysis and reporting needs, the company takes two master QlikView documents
in the 500 MB range (on high compression), loads 500 million rows, 300 columns of data
and creates 1,800 user documents through QlikView Publisher during the weekend, with 400
documents run daily, the largest of which is 1.1GB on disk and contains roughly 40MM rows.

Figure 8

Main App
(1000’s rows per sales

rep, 8000+ reps)

PROD - Publisher
- AD integrated
- Apps looped and reduced

Hundreds of internal
dashboards

(5000+ internal users)

~40 QV Developers/
Designers

download

Testers

PROD QVS (15)
8-CPU Cores
32 GB RAM

DEV/TEST QVS (4)
8-CPU Cores
32 GB RAM

Teradata

SQL Server

Excel, Access, Other

Aggregated
QVDs (10+)

DB2, Oracle,
Sybase

QVD Aggregators

Base QVDs
(1,000+)

QVD Generators
(100+)

5,000+
Internal Users

8,000+
Field UsersHoused on QVS boxes

Plug-In

AD

SAN

Source Data QV Data QV Docs QV Distribution QV Server Client Access End Users

 | Page 15

Number of Applications

In many cases, QlikView deployments start out small in nature, typically in one department
and containing one application, but quickly grow quite large as companies see the rapid
return on investment of QlikView’s approach to BI. Other departments start creating their own
applications and soon there can be hundreds of applications spanning multiple departments in
multiple geographies. Additionally, even within single departments, as adoption rates increase,
a more diverse set of people need access to the data, necessitating the need for more varied
applications. This puts increasing demands on IT in a variety of dimensions, some of the most
critical being how to handle data load demands (from source databases), data management,
user management, and so on.

THE QLIKVIEW APPROACH:

It’s important to understand the definition of an ‘application’ used for this section. In general,
an application is a QlikView file that either a) is used by an end user to analyze, visualize and
present data – known as a .qvw file - or b) is used as a ‘headless’ (i.e. UI-less) optimized
application containing data– known as a .qvd file. In both cases, an application contains data
extracted from original data sources such as a database or flat file.

As companies grow out their footprint of QlikView applications, it’s important for
those responsible for the deployments to employ a multi-tiered data and application
architecture approach.

Let’s take a look at an example:

Figure 9

User Base
 Executives	 18
 Business analysis	 37
 Sales		 70
 Operations 425
Total Users	 550

QlikView Server
 Single QVS server
 8 CPU cores
 64 GB RAM

Expectations
•	 Executives only need

high level metrics
•	 Executives need fast

response times
•	 BA’s need most

details and data
•	 Sales and Operations

are mostly high level
and reporting needs

Tabs Included in the scope of the Solution
 Introduction How To Dashboard Profitability Customer Products Market Basket

 What If Order Detail Region Analysis Shipping Zones Product Max Campaigns Change Analysis

 Order Trends Cust Reports Order Reports Shipping Reports

QlikView Data model (row counts shown on each table)

Sales Rep 59

SalesPersonID

Sales Rep Name

Manager Number
Billing Address 18,372

BillToAddressID

AddressLine1

AddressLine2

Customer 12,309

CustomerID

Customer

Basket_CustomerID

CustomerName

Calendar 913

OrderDate

Year

Month

Product 186

ProductID

Class

Color

DaysToManufacture

Orders 609,232,600

SalesPersonID

BillToAddressID

OrderDate

ProductID

CustomerID

AccountNumber

OnlineOrderFlag

PurchaseOrderNumber

SalesOrderID

SalesOrderNumber

 | Page 16

The scenario outlined above is for examining a company’s sales data. The organization has
various demands in terms of requiring access to the data, in various degrees of granularity
and specificity. Below is a graphic depicting the deployment:

Figure 10

In this deployment, the company has a total user base of 550 individuals, spread out across
both business functions and role. The data contains over 600 million orders records as well as
customer, store, product, sales rep and date data. The company wants to provide executives,
sales and operations with an aggregated dashboard view of the data, but also wants to provide
business analysts with more granular access to the data for detailed analysis.

SCENARIO 1: ONE SINGLE APPLICATION COVERING ALL USE CASES:

This scenario includes a single QlikView document called Orders Dashboard, which contains all
subject matter in the data model across all 609 million rows of data. This would be a very large
document and would provide the worst performance of the scenarios presented here.

The advantage of this approach is that it is easy to develop, however this would be the hardest
to performance tune to meet the executives’ needs and also drill down to the transaor ctional
details that the business analysts sometimes need. Since the footprint of this application
would be large, less capacity for concurrent users would be supported than some of the
subsequent scenarios.

Concurrent
Users - 80

Main QVD
Order_Details

Total Rows
609,040,000

Orders Dashboard
N

um
be

r
of

 C
on

cu
rr

en
t

U
se

rs
0

80

Number of Rows0 600,000,000

Total RAM Used: 108 GB

Product
Prod_ID
Prod_Type
Prod_Name
Prod_Group
-
-
-

Customer
Customer_ID
Customer_Name
Customer_Addr
Customer_Type
-
-
-

Order Details
OrderDtl_Key
Order_ID
Order_Type
Order_Date
Order_Status
-
-
-

Calendar
Date
Year
Month
Day
-
-
-

Store Location
Loc_ID
Store_Type
Store_State
Store_Mgr
-
-
-

 | Page 17

Figure 11

SCENARIO 2: 3 APPLICATIONS SEGMENTED BY DETAIL:

This scenario, seen in Figure 11, includes three.QlikView documents called Orders Dashboard
(1.8 million rows), Orders Analysis (46 million rows) and Orders Detail (609 million rows). The
data model for these QlikView documents would be almost identical, though the granularity of
the data would differ drastically. Notice the concurrency volume of users goes down as users
drill from the dashboard to the analysis app and then again down to the details app. This is a
normal distribution pattern for segmented documents.

The advantage of this approach is that this supports a higher concurrency, since the smallest
app is in memory with the most instances. It also has a high performance since the smallest
application is the fastest.

SCENARIO 3: 5 APPLICATIONS SEGMENTED BY SUBJECT:

This scenario includes five QlikView documents. The first one is the dashboard (5 million rows),
and the next four are subject oriented analysis applications, each having 50 million rows. The
data model for the analysis applications would be very similar, but aggregated by different
dimensions from the base data model. Aggregation of the four analysis applications could take
place from a detailed set of QVDs, or the QVDs could be pre-aggregated and supplied to these
analysis applications.

Concurrent
Users - 53

Main QVD
OrderSumm

Total Rows
1,850,000

Orders Dashboard

N
um

be
r

of
 C

on
cu

rr
en

t U
se

rs
0

80

Number of Rows0 600,000,000

Total RAM Used: 25 GB

Concurrent
Users - 24

Main QVD
Orders

Total Rows
46,000,000

Concurrent 		 Main QVD		 Total Rows
Users - 3 		 Orders_Details	 609,040,000

Orders Analysis

Orders Detail

Orders Dashboard Total RAM Used: 108 GB

Product
Prod_ID
Prod_Type
Prod_Name
Prod_Group
-
-
-

Customer
Customer_ID
Customer_Name
Customer_Addr
Customer_Type
-
-
-

Order Details
OrderDtl_Key
Order_ID
Order_Type
Order_Date
Order_Status
-
-
-

Calendar
Date
Year
Month
Day
-
-
-

Store Location
Loc_ID
Store_Type
Store_State
Store_Mgr
-
-
-

Orders Dashboard Total RAM Used: 108 GB

Product
Prod_ID
Prod_Type
Prod_Name
Prod_Group
-
-
-

Customer
Customer_ID
Customer_Name
Customer_Addr
Customer_Type
-
-
-

Order Details
OrderDtl_Key
Order_ID
Order_Type
Order_Date
Order_Status
-
-
-

Calendar
Date
Year
Month
Day
-
-
-

Store Location
Loc_ID
Store_Type
Store_State
Store_Mgr
-
-
-

Orders Dashboard Total RAM Used: 108 GB

Product
Prod_ID
Prod_Type
Prod_Name
Prod_Group
-
-
-

Customer
Customer_ID
Customer_Name
Customer_Addr
Customer_Type
-
-
-

Order Details
OrderDtl_Key
Order_ID
Order_Type
Order_Date
Order_Status
-
-
-

Calendar
Date
Year
Month
Day
-
-
-

Store Location
Loc_ID
Store_Type
Store_State
Store_Mgr
-
-
-

 | Page 18

Figure 12

The advantage of this approach is that is supports a higher concurrency, since the smallest
application is in memory with the most instances.

As can be seen from the preceding example, the number of QlikView applications can quite
easily grow, according to the type of data that is needed to be analyzed, the user community
doing the analysis and so on. It’s important to construct a tiered data and application
architecture. Figure 13 below illustrates an example 3-tiered mixed architecture to support
growing numbers of applications.

Profitability Analysis

Concurrent
Users - 6

Main QVD
Order

Summary

Total Rows
32,000,000

med med

Market Basket Analysis

Concurrent
Users - 8

Main QVD
Order

Summary

Total Rows
32,000,000

med med

Product Analysis

Concurrent
Users - 6

Main QVD
Order

Summary

Total Rows
32,000,000

med med

Orders Analysis

Concurrent
Users - 7

Main QVD
Order

Summary

Total Rows
32,000,000

med med

Concurrent
Users - 53

Main QVD
Order Summary
by Month

Total Rows
1,850,000

Orders Dashboard

us
er

s

R
A

M

us
er

s

R
A

M

us
er

s

R
A

M

us
er

s

R
A

M

N
um

be
r

of
 C

on
cu

rr
en

t U
se

rs
0

80 us
er

s

R
A

M

high low

Number of Rows0 600,000,000

chained

chained

chained

chained

chained

ch
ai

ne
d

ch
ai

ne
d

 | Page 19

Figure 13

TECHNICAL CASE STUDY: SANDVIK: 50 MILLION ROWS, MORE THAN 100 DATA
SOURCES, AND 3,000 USERS.

Sandvik, a leading tooling, materials technology, mining, and construction company, has more
than 3,000 QlikView users across a large number of business functions including sales, pricing,
purchasing, HR, and service. The company was first up and running quickly with an application
to analyze customer profitability using data sourced from multiple systems. Sandvik now has
more than 400 QlikView applications, the largest of which contains more than 50 million rows
drawn from data sources that comprise terabytes of data. QlikView utilizes data from DB2,
SAP BW, iSeries, Microsoft SQL Server, Oracle, text files, and a mainframe—more than 100
sources in all.

Analysis

Dashboard

Analysis

Report

QVD
Generator

App

QVD
Generator

App

QVD
Generator

App

QVD
Generator

App

QVW Model QVW Model QVW Model

QVD Files QVD Files QVD Files

Dashboard

Description:
This architecture includes the use
of QVD �les as a 2nd data stage,
from which a QlikMart stage is
built. This allows the presentation
layer application to be basic binary
loads from the QlikMart layer.

When to use:
Use this architecture when a short
batch window is desired (QVD
layer is fast) and you want to shield
presentation app developers from
having to build data models in
a QlikView application. This
architecture also promotes re-use
at the QVD layer and the QlikMart
layer, as layers can serve many
di�erent presentation applications.
This helps support
co-development of QlikView
between IT and business teams.

Databases
and other data
sources.

QlikView applications
that extract and
(optionally) denormalize
source tables into
QlikView QVD �les.

QVD �les- QlikView data
�le layer. QVDs can be
one-to-one match with
source tables or
denormalized “views” of
several source tables.

A “QlikMart” is a QlikView
application that simply
holds a data model that
can be binary loaded as a
the base data model for
end-user application.
Examples might be a
Finance QlikMart, a Sales
QlikMart, and an
Inventory QlikMart.

Production applications.
Built from QlikMart
applications where
possible. Minimal (if any)
scripting. Can optionally
retrieve from QVD layer
as well as QlikMart layer. Pr

es
en

ta
ti

on
 L

ay
er

 Q

lik
M

ar
t L

ay
er

 Q
V

D
 L

ay
er

 E

xt
ra

ct
 L

ay
er

 S

ou
rc

e
La

ye
r

 | Page 20

QlikView Application Design

As in many other aspects of life, bad design can lead to problems (or even failure) in production
environments. For QlikView applications, this is no different. Of significant importance, from
the point of view of scalability, is the design of the presentation layer (i.e. the UI). As with many
similar applications, QlikView is responsive to how the UI is designed (e.g. what objects are
used, how they are used and what the expected interaction model is) and consideration must
be made for UI design best practices when looking at the challenge of providing a predictable
user experience.

THE QLIKVIEW APPROACH:

While this paper is not an exhaustive study on UI design best practices, it’s worth noting
some factors associated with causing an application to perform inefficiently. It’s important
to emphasize the challenges associated with providing a blanket scalability ‘formula’ for all
QlikView deployments because application design is such an important component in any
system’s performance as it is required to scale.

An application must be designed for its purpose. Application design covers a wide range of
decisions and performance will depend on data model, expressions, unique values, number
of objects, number of records, number of variables etc. Therefore it is important to consider
performance at as early a stage as possible when starting up a new project. When considering
larger implementation design characteristics, it’s important to take into account (and monitor)
the performance of the application (or applications) early in the implementation process.

In practice, it has been observed that two different application designs that might provide the
end user the same value using the same drill path might differ in the demand for processing
capacity when say, a pivot table is used rather than a statistics box, or when section access
is used to employ security rather than server-side ‘loop and reduce’. Because of these
differences, it’s important to create a benchmark application (with expected user interface
design and general expected user interaction models) and measure the end-user response
characteristics. From this benchmark, the expected hardware requirements to accommodate
more users, data and/or applications can be extrapolated quite easily.

Even though QlikView scales uniformly by adding hardware, poor application design might
lead to sub-optimal demands for hardware. By being thorough in the application design one
can reduce the initial demand significantly and get much more performance for the
hardware footprint.

Some examples of design factors that should be considered when optimizing an application
for performance:

•	 Avoid using too many listboxes on any given tab.
•	 Do not overuse Table boxes and Pivot tables.
•	 Avoid repeated use of large expressions within a visualization.

 | Page 21

•	 Avoid use of macros.

•	 Avoid overuse of variables for UI expressions. Each variable needs to know which one is
calculated first. It is best practice to move some of them into the script as ‘fixed’ values at
the time of reloads.

•	 Avoid using many text objects with complex calculations: use a chart to display the similar
metrics (e.g. mini chart).

•	 Avoid using the function date(Now), rather use today() if today’s date is needed. Now()
will recalculate every second of the day.

•	 Avoid using too many distinct text values in a field, which will increase the size of the
file, thus slowing performance. For example: Separate phone numbers with area code
into separate fields (i.e. use (212) and (555-5555) rather than (2125555555)). Divide
addresses into separate fields, not combined together.

•	 Do not hold non-necessary fields in memory if not used or not needed in the future. Avoid
select * but pick the fields that are needed.

•	 If a table contains large amount of records, give a calculation condition to narrow down the
selection before viewing it, if possible.

•	 (See section on Size of Data scaling): If it is not necessary to distribute an entire
application, perform a loop and distribute using QlikView Publisher (e.g. per region or
department) so that each application is smaller.

IMPACT OF UI DESIGN DECISIONS ON RAM USAGE:

Characteristics of User interface Objects Created

Figure 14

Depending on the definition of an object the amount of RAM required to draw the object can
vary drastically. For example the chart above displaying the dimension ‘Salesperson’ would take
a tiny amount of RAM to draw assuming that there were only three salespeople. However, if the
application designer were to change the dimension to ‘product’, say, and there were 13 million
different product SKUs listed in the database, then drawing that object could take a significant
amount of RAM.

Even non-aggregated data takes up RAM to display. For example a listbox with 50 million records
in it would be expensive to draw. This is especially true of tableboxes and other detail level

Salesperson Total Sales Cost Margin Margin %
Tina $900 $600 $300 33%
Tom $600 $200 $400 66%

Teresa $1000 $500 $500 50%

 | Page 22

objects. For example if the following five fields are used in a tablebox - Salesperson (3 distinct
occurrences), Region (3 distinct occurrences), Customer (200 distinct occurrences), Date (3652
distinct occurrences) and Order ID (50 million distinct occurrences) then you have created a
structure that will require 250 million cells to be stored in memory (the # of records in the most
granular field – 50 million – times the number of columns – 5). This object will be quite expensive
to display. Best practices would dictate to not use this object or to conditionally suppress it until
selections are made to limit the number of records to return.

NUMBER OF USER INTERFACE OBJECTS VIEWED

When a QlikView application is opened, all visible (i.e. not suppressed, hidden, or minimized)
charts and objects are calculated and drawn, taking up a corresponding amount of RAM. The
more sheet objects visible, the more RAM used to display them all and the more CPU required to
calculate them. Even objects that have never been visible and never shown take up some RAM
simply by virtue of being defined in a QlikView document. For example all the objects on a hidden
sheet will still take up some RAM. This is a smaller subset of the amount of RAM that would be
needed if the object was to be drawn but some RAM is still used in documents.

CACHED AGGREGATIONS

Once an object has been viewed the aggregates are cached in case they are needed again.
This will improve performance for chart calculation time at the cost of RAM to cache this
information. The caching of data is also done by selection state so that the representation of
the same chart with different sets of selections is cached as different selections are made
within the document. Unlike the RAM used to draw user interface objects, RAM used to store
cached aggregations can be shared between users so multiple users viewing the same charts
in the same selection state can take advantage of the same cache.

 | Page 23

Why Architecture Matters to Scalability
As has been discussed throughout this paper, much of the conversation about QlikView
scalability centers around understanding and employing a best practices approach to
architecture design and deployment. For example, it’s important for IT professionals to have
a good understanding of the approach that QlikView recommends to handle large data (i.e.
using staged data environments, breaking up documents into smaller, more manageable and
meaningful pieces, employing a multi-server environment and so on). The real-world examples
below illustrate the reasons why being pro-active in the up-front architecture design can result
in a much better performing deployment and better end-user experience.

SCENARIO 1:

A deployment has 800 million rows of data and a total user audience of 500 users. With a
maximum concurrency of around 10%, this gives 50 maximum concurrent users at any given
time. Initially (in Option 1), only 1 QlikView application was created to meet the needs of the
organization and some performance tests were conducted.

Figure 15

When aggregated, Option 1 contains a total wait time per day of 5.6 hours for 50 concurrent
users, with an average response time of about 5 seconds. End user performance was deemed
to be unacceptable, given the amount of RAM available in the system.

A second option (Option 2) was created, providing access to the same data, however
making available to interested users a second smaller, aggregated-level application. (The
organization recognized that not all of its users needed low-level detail information) The results
are show in Fig 16 below.

It’s clear that by employing a very simple approach to architecting the QlikView deployment
(2 documents instead of 1; providing the appropriate level of data detail to the appropriate
people) that end-user performance can be improved (~300% in this case) and less hardware is
needed, even though the solution and data access being offered is the same.

800 M rows
4 GB �le size
16 GB footprint
1.6 GB per user
avg. resp. time ~5sec

Option #1

 Avg.
Resp.
Time

~5 sec

 Avg.
Sessions
per Day

400

 Avg.
Selections

per Session

10

 Total Wait
Time per

Day

5.6 hours

 #QVS
needed

2

 CPU
Cores

 24

RAM

64

60 M rows
.5 GB �le size
2 GB footprint
.2 GB per user
avg. resp. time <1 sec

Option #2

 Avg.
Resp.
Time

<1 sec

~5 sec

 Avg.
Sessions
per Day

350

50

 Avg.
Selections

per Session

10

10

 Total Wait
Time per

Day

.95 hours

.7 hours

1.7 hours

 #QVS
needed

-

-

1

 CPU
Cores

-

-

24

RAM

-

-

64

800 M rows
4 GB �le size
16 GB footprint
1.6 GB per user
avg. resp. time ~5sec

 App 1

App 2

 | Page 24

Figure 16

SCENARIO 2:

Two companies have deployed QlikView, both of whom are addressing the same volume of
data (~800M rows) and have the same hardware configuration (16 cores and 64GB RAM).
Both also have similar overhead capacity when it comes to IT administration resources available
to manage the deployment. However, by adopting a proactive and thoughtful approach to the
QlikView deployment architecture, one company can service nearly 5 times the user capacity
when compared to the other company.

Figure 17

Both examples illustrate the effectiveness of conducting a proactive approach to architecture
design when implementing a large QlikView deployment, and the payoff that can be gained
in terms of end-user performance, hardware requirements and overall effectiveness of the
QlikView deployment.

- limited architecture
- reactive
- struggling to fund scaling

Midwest Mfg Client

QVS/Publisher

- architecture driven
- proactive

Southeast Hospital

64GB RAM 16-Cores

~ 800 Million Rows of Data

QVS/Publisher 64GB RAM 16-Cores

~ 800 Million Rows of Data

3 Dashboards 12 Dashboards250 Users 1200 Users

.5 Admins .5 Designers .75 Admins 1 Developer 1.5 Designers1 Developer

800 M rows
4 GB �le size
16 GB footprint
1.6 GB per user
avg. resp. time ~5sec

Option #1

 Avg.
Resp.
Time

~5 sec

 Avg.
Sessions
per Day

400

 Avg.
Selections

per Session

10

 Total Wait
Time per

Day

5.6 hours

 #QVS
needed

2

 CPU
Cores

 24

RAM

64

60 M rows
.5 GB �le size
2 GB footprint
.2 GB per user
avg. resp. time <1 sec

Option #2

 Avg.
Resp.
Time

<1 sec

~5 sec

 Avg.
Sessions
per Day

350

50

 Avg.
Selections

per Session

10

10

 Total Wait
Time per

Day

.95 hours

.7 hours

1.7 hours

 #QVS
needed

-

-

1

 CPU
Cores

-

-

24

RAM

-

-

64

800 M rows
4 GB �le size
16 GB footprint
1.6 GB per user
avg. resp. time ~5sec

 App 1

App 2

 | Page 25

The QlikTech Scalability Center & Best Practices

QlikTech has a Scalability Center, which is dedicated to working on topics related to
performance and scalability. The main focus is on handling larger amounts of concurrent users
and applications covering larger data volumes. As part of the Scalability Center’s offering there
is a service for simulating realistic load scenarios of customer-specific applications deployed
in the lab hosted by the Scalability Center. The benefit of this type of service is three-fold.
Firstly, performance measurements for a broader scope of applications can be verified and the
risk for forming conclusions based on customized and well performing applications is reduced.
Secondly, there is a transparency on how QlikView documents are designed and utilized which
in some cases can be transmitted directly to R&D as an input for product improvements.
Thirdly, by offering customer sessions in the Center, customers can of course be provided with
useful information on how their applications scale at larger deployments.

METHODOLOGY:

In the scalability center the server performance testing tool, JMeter, is used to script a user
scenario and create a data load scenario. To replicate a realistic load mirroring real life scenarios,
customer scenarios must be analyzed thoroughly. However, there are some assumptions and
guiding principles that are used to create a replication of a real life scenario:

•	 Busy hour often occurs when a QlikView application has been updated with fresh data
•	 Tests should be performed from a perspective when the QVS has been restarted 	

and has an empty cache
•	 A typical user scenario can be simulated by predefining what objects that are likely to be

used for drill down and what sheets that are likely to be of interest for a typical user.
•	 Tests will have a pattern in what type of actions/clicks an average user is assumed 	

to perform
•	 Each individual user is likely to have interest in different selections within any object

•	 Test script will randomize any selection within a certain object (e.g. if a user is
assumed to click in a Country object, users are assumed to be interested in different
countries)

•	 A typical user will have a think time between clicks
•	 Tests will implement think times between clicks. These think times typically varies 	

dependent on what type of application and what type of users that are simulated
•	 An average user can be assumed to perform a pre-defined number of clicks. If the 	

amount of concurrent active users should persist over a certain period of time new 	
sessions must be initiated
•	 When a simulated user performs its last action, this will trigger creation of a new 	

session for a new user

With the methodology for creating a script as defined above, test executions and investigations
from different perspectives are performed to make conclusions on how a certain QlikView

 | Page 26

application performs under certain circumstances. It is important to understand that the
results from any investigation on how QlikView performs is somewhat dependent on what the
application design looks like and what user behavior has been assumed. Some objects may
require a lot of processing to be calculated while others may not. How the user scenario (i.e.
which objects that are triggered and how often) is implemented will therefore have an impact
on the results. Each Virtual User (VU) generates a certain amount of clicks during its session.
If there are short think times between clicks there will be a large amount of simulated clicks per
time unit even with a small amount of concurrent VUs and vice versa. Therefore it is important
to set realistic values on the following variables when performing customer benchmarking
sessions:

•	 Concurrent Virtual Users
•	 Think time between requests
•	 Amount and type of clicks per user session

PRESENTATION OF SOME RESULTS OF INVESTIGATIONS FROM THE
SCALABILITY CENTER:

Any performance result/measurement has a significant dependency on which particular
application has been subject for the test session. It is therefore important to look for trends and
not at any particular value when interpreting the results. Application design is one important
part when it comes to improvements in performance. Another, common solution that at some
point it is necessary is to upgrade the hardware. As discussed previously in this paper, there
are several possible situations that might lead to an increased demand on hardware. When
considering this, it is important to realize what a hardware upgrade is expected to deliver in
terms of performance improvements. Let us distinguish between the following pre-requisites:

•	 An increased demand on number of concurrent users.
•	 Demand on improved response times.
•	 An increased amount of data.

Scaling with hardware can be done horizontally or vertically. Horizontal scaling means adding
new servers in a cluster or via a load balancer. Vertical scaling means adding hardware to an
existing machine. Which is the better alternative depends on the circumstances. The first thing
to secure is that there is enough RAM available to handle a certain application with the desired
number of concurrent sessions. As can be inferred from before, if a single application does not
fit into RAM it does not matter how many small machines that are added to the server cluster.
When it has been secured that there is enough RAM for a certain application one can start
to scale horizontally or vertically to increase the capacity of number of concurrent sessions. In
this section some investigations on how QlikView scales from different perspectives will
be presented.

Apart from good application design one must also ensure that QlikView Server has the pre-
conditions needed for delivering the great performance it is capable of. Server configuration
is an example of such a pre-condition. The following section presents some best practices
regarding server settings in larger deployments.

 | Page 27

SERVER CONFIGURATION:

Extensive testing has been performed to verify how some of the more important server settings
should be tuned for the hardware on which the QlikView Server runs. On average it has been
concluded that the BIOS settings presented in Table 1 should be used for best performance.
QlikView is not NUMA (Non-Uniform Memory Access) aware and therefore NUMA should be
disabled for best performance. Enabling Node Interleave disables NUMA.

Variable Setting How to configure

Hyper threading Disable System BIOS setting

Node Interleave Enable Advanced BIOS setting

Hardware pre-fetch Disable Advanced BIOS setting

Table 1: Recommended BIOS configuration for optimal performance of QVS

Other settings that should be tuned for best performance are any settings related to power
management as energy saving schemes will adversely affect performance. Power and energy
settings should be set to high performance.

It is recommended to turn off performance logging in production servers, if not needed.
Performance logging can be turned off from the Enterprise Management Console.

In the following sections discussing the results of the Scalability Center, the QlikView
application that has been used for benchmarking is a retail application. Information about the
application is seen in Table 2.

Data model Number of records Application size on
disc

Application size in
memory

Star 68 M 438 MB 1 GB

Table 2: Statistics about the application used within this test session. Application size in
memory measurements have been performed in idle state (i.e. prior to any load has been
generated)

RESULT 1: CONCURRENT USERS - SHOWING THAT QVS IS CAPABLE OF HANDLING
MANY USERS:

As was discussed earlier, the theoretical number of concurrent users that a QlikView server can
handle is dependent on the amount of CPU capacity available and how much memory a certain
session corresponds to for a certain application. Typical values seen in the Scalability Center
ranges from 1 to 10% of the application size in memory when caching is excluded. When
handling a lot of concurrent users one can expect a high utilization of CPU capacity. When
there is not enough processing capacity available response times will grow as requests are
getting queued, waiting for service.

 | Page 28

To demonstrate that QlikView is capable of handling many concurrent users when there is
sufficient processing capacity and RAM available some tests have been run against a 12 core
machine with 96 GB of RAM.

In Figure 18 it is seen how the number of active sessions increase over time as new VUs are
added. When 1400 concurrent VUs have been reached the sessions persist just continuing
to generate requests. In Figure 19 where the average response time for a selection has been
plotted, it is seen how the response times can be seen as quite stable throughout the test
session. Peaks for response times correlates with the average CPU (Figure 20), as expected.
When all VUs have been initiated, a load of about 350 selections per minute is generated, see
Figure 21. CPU reaches about 65% utilization on average during the busiest period for the
server. Altogether this indicates that the investigated scenario for this application will run in a
stable manner at the 12 core machine which has been used for this test session.

Figure 18: Green line shows the amount of accumulated sessions (i.e. concurrent
VUs that are running) as new sessions are initiated.

sessions

1600

1500

1400

1300

1200

1100

1000

900

800

700

600

500

400

300

200

100

0
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Minutes

Sessions Accumulated

 | Page 29

Figure 19: Average response time per click (rendering not included).

Figure 20: CPU loading during the test session, measured with performance

%
85%

80%

75%

70%

65%

60%

55%

50%

45%

40%

35%

30%

25%

20%

15%

10%

5%

0%
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 Minutes

CPU QVS

ms

1000

950

900

850

800

750

700

650

600

550

500

450

400

350

300

250

200

150

100

50

0
0 20 40 60 80 100 120 140 160

Avg response time

Minutes

 | Page 30

Figure 21: Number of selections per minute plotted over time.

RESULT 2: SCALING OVER CORES – SHOWING HOW QLIKVIEW SCALES UNIFORMLY
WITH THE ADDITION OF PROCESSING CORES:

QlikView aims to utilize all available capacity for processing when there is something to calculate.
When there are several concurrent requests for processing they will have to share the available
CPU capacity, meaning that the response times will degrade. To maintain performance when
there is an increased demand for processing or an increased amount of data, more capacity will be
needed. To demonstrate how QlikView performance scales by adding processing capacity, tests
have been performed during idle state and during higher loads.

Tests have been performed to validate how performance scales with the available amount of
processing capacity on a Server. Tests are performed by single user idle state measurements
to see how single selections scales over cores and by simulating many concurrent users
generating load against the QlikView server to see how less demanding operations scales over
cores. By enabling a different amount of cores during tests, it can be investigated how QlikView
benefits by adding processing capacity.

The environment used for load tests have been dedicated for this purpose, and external factors
(e.g. network variations) can be assumed to be negligible. Environmental setup during the
benchmarking session has been a load client located at a separate machine communicating
with the IIS web server running the same dedicated hardware as a single QlikView Server
(QVS). The server used throughout this test session has 2 CPUs with 6 cores each, running
at 3.33 GHz.

450

400

350

300

250

200

150

100

50

0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140

Number of Selections (Actions) per minute

Minutes

 | Page 31

IDLE STATE TESTS:

During idle state testing, single selections have been performed manually against a rich
QlikView application. Selections that have been performed correspond to heavy calculations
and measurements have been performed for non-cached selections. Monitoring of server
performance was mainly performed by collecting task manager statistics. The affinity
configurations used in these tests were 6 and 12 cores.

LOAD TESTS SIMULATING MANY CONCURRENT USERS:

The same test script has been used throughout the test session. Selections/clicks simulated
by each virtual user are described in Table 3. The script simulates 100 concurrent users with
a think time between clicks of 4 seconds. The amount of processing capacity at the server
has been tuned by changing the affinity for the number of cores in the QlikView Enterprise
Management Console. The affinity configurations used in this investigation were 3, 6, 9 and
12 cores.

Step Description

1 Open document, new session created

Loop start
Each session will loop its selections from this point 5 times. After 5
iterations a new virtual user will be initiated starting over at Step 1.

2 Change to sheet 1

3 Random selection from List box year

4 Random selection from List box month

5 Random selection from Multi box “upc”

6 Zoom random area in chart 1

Loop end
When the steps above have been performed the session will start over
from step 2.

Table 3: Implemented scenario for each virtual user

RESULTS:

What has been observed is that as QVS scales with more cores then user response times will
decrease in a very highly proportional manner with the addition of more cores.

 | Page 32

LOAD TESTS SIMULATING MANY CONCURRENT USERS:

A test script has been run against the same server configured with different amounts of
available cores. The script simulates 100 concurrent users that perform a click every 4th
second. In Figure 22 the average response times for server requests have been plotted for the
different configurations. A server request is defined as something requiring action from the QVS
(with requests for static content excluded). It is seen how the response times decrease as the
amount of available processing increases. Also the CPU utilization from the available cores is
seen to decrease in Figure 23.

 | Page 33

Figure 22: Average response time for server requests.

Figure 23: Average CPU utilization for the different scenarios have been plotted where
100% corresponds to available amount of processing within configured amount of cores.

3500

3000

2500

2000

1500

1000

500

0

Average response time server reqs.

3 6 9 12

ms

cores

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%
3 6 9 12

Average CPU

cores

 | Page 34

The decrease in CPU utilization is not as significant as might be expected only considering the
increased amount of processing capacity available to the application. However, this is caused
by the implementation/design of the script. If a VU has a faster response time, the think
time will still be 4 seconds. This means that VUs with shorter response times will generate
more requests during the same period of time. Figure 24 plots the throughput as number of
simulated clicks per minute for the 100 VUs.

Figure 24: Number of clicks per minute that have been simulated for the different test
executions.

It is seen how performance for the tested application with the simulated user scenario scales
proportionally by adding more processing capacity. When dimensioning the hardware for a
number of applications assumed to be utilized by a certain amount of users it is important to
make sure that there is enough processing capacity for acceptable response times. It is a good
thing that 100% CPU is utilized over short periods of time as this means that we will have
shorter response time and better user-perceived experience. But one must make sure that the
CPU utilization does not saturate on average, as this means that requests for processing are
getting queued up, resulting in longer response times.

RESULT 3: PERFORMANCE AS A FUNCTION OF AMOUNT OF RECORDS:

TECHNICAL INFORMATION REGARDING THE TESTS:

The QlikView application used for benchmarking, populated with various amount of data, is a
typical retail applications. The original document hosts data from 100 stores. The data model
of the application is a star shape. The sizes for the variants of applications used within this
investigation correlates with the amount of stores that has been included in an application, see
Table 2. The Number of records variable corresponds to the amount of transactions that is
included in the source data.

900
800
700
600
500
400
300
200
100

0 3 6 9 12

Throughput

cores

cl

ic
ks

/m
in

ut
e

 | Page 35

Application
Number of records
(M)

Application size on
disc

Application size in
memory

10 stores 68 438 MB 1 GB

30 stores 168 980 MB 2.5 GB

50 stores 271 1.52 GB 4 GB

70 stores 315 1.77 GB 4.7 GB

90 stores 400 2.33 GB 6.4 GB

Table 4: Mapping of number of records to the different applications used within this test
session. Application size in memory measurements have been performed in idle state (i.e. prior
to any load has been generated)

The environment used during benchmarking was dedicated for this purpose, and any external
factors can be assumed to be negligible. Further detail about the test environment is described
in the table below.

Environmental Attribute Value

QVS Version 9 SR7

RAM 96 GB

Cores 12

Web browser Version Firefox 3.6.15

Table 5: Environment used during test session

IDLE STATE ANALYSIS:

This section examines how the demand for CPU and RAM depends on the number of records.
The applications described in Table 2 have been used for reference measurements. The amount of
required CPU seconds to fulfill the calculations for a certain object will be dependent of what type of
calculations that are requested and how many records a certain calculation involves. When an object
requires calculations of something that involves all records in a data table the amount of required
CPU seconds will increase as the amount of records increases. This is all logical that it takes more
effors to sum up 100 values than doing the same for 10. To visualize this some benchmarking
tests has been performed. By simply monitoring the amount of CPU seconds that has been spent
on calculations for some different selections, it is seen how this scales proportional in Figure 25.
All measurements have been performed for non-cached selections. The slope of the curve for the
different type of selections in the example is not the same however. The reason for this is that a
certain selection involves different calculations. Below follows a brief description of what calculations
the example selections corresponds to

Sales by Period; Open a sheet that mainly triggers one object with three sum expressions
over as many records as there are transactions (i.e. Number of records in Table 2)

 | Page 36

Sales by Item; Open a sheet that mainly triggers one object with six calculations of a
diverse complexity, all over as many records as there are transactions (i.e. Number of records
in Table 2)

Year Selection; Selection at sheet Sales by Item, triggering the same six calculations as
triggered when opening the Sales by Item sheet

The Year selection corresponds to selecting slightly more than 1/3 of the original amount of
data. When comparing the ratio for the elapsed CPU seconds for the Sales by Item selection
and the Year selection this relates proportionally to the amount of selected data (i.e. slightly
more than 1/3 CPU seconds needed). This shows that QlikView scales proportionally in its
demand for CPU in relation to amount of data.

Figure 25: CPU seconds as a function of records

CPU seconds

400

350

300

250

200

150

100

50

0

0 2 33 61 92 122 153 183 214 245 275 306 336 367 398 Million records

CPU Seconds

Sales by period
Sales by item
Year 2008

 | Page 37

Conclusion – QlikView scales uniformly and predictably and
has a proven track record

This paper has outlined how the approach employed by QlikView has been proven to provide
consistent and predicable end-user performance when faced with the need to scale up the
volume of data needed for analysis or the amount of users required to access the system.

QlikView‘s product components and architecture allow for horizontal and vertical scaling and
are utilized when the demands on the system increase. QlikView scales uniformly, allowing IT
professionals to effectively capacity plan for future expected system usage in order to maintain
end-user performance at the expected high levels.

QlikView deployments have been consistently proven to be able to handle many thousands of
concurrent users and extremely large quantities of data so that end-user performance is high.
For IT professionals, system administration follows standard approaches such as clustering,
performance monitoring and horizontal and vertical scaling.

