

Generic Keys

QlikView Technical Brief

2 October 2012, HIC

www.qlikview.com

2

Contents

Contents .. 2

Introduction ... 3

Basics .. 4

Groups in the dimension ... 6

Data model ... 6

Dimensional link table ... 7

Inclusive and exclusive generic symbols .. 8

Composite generic keys .. 10

Example 1: Complex security - Authorization bridge table ... 11

Authorization table in the QlikView data model .. 12

Authorization ID in the transaction table ... 13

Authorization bridge table ... 13

Example 2: Concatenation of fact tables - Actual and Budget ... 15

Loading the actual numbers ... 16

Loading the budget numbers .. 17

Dimensions and dimensional link tables .. 17

Example 3: Link table and multiple fact tables.. 19

Dimensions and dimensional link tables .. 20

Fact tables .. 20

Master link table .. 22

Some practical tips .. 24

Hide the generic keys ... 24

Use variables for the generic symbols .. 24

Use Autonumber ... 24

Use Applymap .. 24

3

Introduction

This document is about Generic Keys, which is a way to define keys between tables in a more

general way so that their values can represent other things than individual keys; they can represent

groups of keys or any key. With them, a more flexible data model can be created and more data

modeling problems can be solved.

Generic keys should not be confused with composite keys, which is a different concept. Composite

keys are keys that contain information from several individual keys, e.g. by a simple concatenation

of the two individual keys, whereas generic keys are keys, often from a single field, that contain

symbolic key values that represent several or all individual key values.

An example: In many data models, there is a product table where each product has a unique

product ID. If you create a generic key for such a dimension, the generic key could contain not only

the individual product IDs, but also generic symbols for product categories and a symbol

representing all products.

In most apps, generic keys are not necessary and should not be used. But there are cases where it

can solve real problems and then you should not hesitate to use them:

• Authorization table with OR-logic between fields

If you have an authorization table, either in Section Access or in the Publisher, you some-

times want to have a slightly more complex access restriction than a simple logical AND

between fields. It could be e.g., that a user is allowed to see sales for all regions for a spe-

cific product and at the same time the European sales for all products. It is straightforward

to achieve such an access restriction using generic keys.

• Mixed dimensional granularity in a single fact table

Often you want to compare actual numbers with budget numbers. The standard method is

to concatenate these two tables into one common fact table. However, this new fact table

could have mixed granularity in many of the dimensions:

Dimensions for

Actual numbers

Dimensions for

Budget numbers

Geography Customer Region

Product Product Product Group

Organizational Salesman Department

Time Day Year

Generic keys can be a help here.

• Multiple fact tables linked using a master link table

Sometimes you have different keys in the different fact tables, e.g. in the pharmaceutical

area you often want to compare actual pharmacy sales to the number of sales calls that

4

have been made. These two fact tables have different set of keys so they cannot easily be

linked. For instance, the physician to which the sales representative has made a call exists

in the calls table but not in the sales table. Further, package size exists in the sales table,

but not in the calls table. To solve this, you will need to define keys that link to all sales

transactions and to all calls. Generic keys can be a help here.

Basics

Let us compare how a dimensional table can be linked to some other table, typically a fact table, an

authorization table or a link table, with or without generic keys. In a normal case, the dimension is

linked directly to the fact table using the appropriate key; for a product dimension this would be the

product ID.

Figure 1. A product table linked to a fact table in a standard solution.

If the same product table would be linked to the fact table, but now using a generic key, the solution

would instead look like this:

Figure 2. Generic key: A product table linked to a fact table via a generic key.

5

And the dimensional link table could look like this:

Figure 3. A simple dimensional link table. All products link to themselves, and in

addition, the <ANY> symbol links to all products.

So, basically the dimensional table is linked to the fact table using a bridge; a dimensional link

table. The key between the link table and the unmodified dimensional table is the original

dimensional key, ProductID. The key between the link table and the fact table is the generic key,

%ProductID. The only difference between the generic product key and the original product key is

that the symbol ‘<ANY>’ has been introduced as a generic symbol; a key value that links to all

products.

The dimensional link table is created by loading the product ID from the product table twice, using

two Load statements:

[Dimensional link table]:
Load ProductID,
 ProductID as %ProductID From Products;

Load ProductID,
 '<ANY>' as %ProductID From Products;

With this new data model, we can allow records in the fact table that use ‘<ANY>’ as product id and

link to all products. This is useful in some data modeling situations e.g. when you want to load

budget and actual in the same fact table or if you have a complex security model involving access

restrictions in a matrix of several dimensions.

This is a very basic example, but it shows quite well the basic principles: the dimensional link table

as a bridge and the generic key that contains symbols for groups of field values. In real life,

however, the model becomes more complex than this. But more about that later.

6

Groups in the dimension

In most databases, some dimensional values are categorized into groups, e.g. products are

categorized into product groups. Also these can be represented in a generic key. Hence, just as

the generic key can contain a symbolic value such as ‘<ANY>’, it can also contain generic symbols

representing product groups, e.g. ‘<Group:1>’, ‘<Group:2>’, etc.

Data model

In a standard solution, you would link the product group table to the product table in a snowflake

scheme. (It is called snowflake since this is what it looks like when you have linked all dimensions

to the fact table this way; customers/countries, dates/periods, departments/business units, etc.).

Figure 4. A product group table linked to a fact table via the product table in a

standard solution.

But if you use generic keys, it will not work to link product group information to the fact table

indirectly via the product table: there may exist records in the fact table that pertain to a product

group – and products groups are not found in the product table. So, the attributes in the product

group table would not link to these records.

Instead, the product group table should link to the dimensional link table. Only this way can you

ensure that selections are propagated correctly through the data model.

Figure 5. Generic key: A product group table linked to a fact table via the

dimensional link table.

7

Dimensional link table

The dimensional link table would in this situation have three groups of records – one where the

original product IDs link to product IDs; a second where the product groups link to the correct

product IDs; and a third where the <ANY> symbol links to all product IDs.

The dimensional link table would have three columns: the generic product key, the original product

key and the product group key. It could then look like this:

Figure 6. A dimensional link table with groups. All products link to themselves,

and in addition, the <ANY> symbol as well as the product groups link

to the respective products.

Here the generic key has been created by a concatenation of the field label and the field value. But

the generic symbols do not have to look exactly like these. However, they do have to include not

only the field value – e.g. the ID of the product or the product group – but also the information

about which field it refers to. This way, a product group record cannot by mistake get the same

value as another record that refers to a product. In other words, the product group ID which is a

number cannot be stored as a number only since it then would collide with the product IDs which

also are numbers.

The dimensional link table is created using three consecutive Load or SELECT statements, one for

the individual products, one for the product groups, and one for the <ANY> symbol:

[Dimensional link table]:
Load '<Product:' & ProductID & '>' as %ProductID,
 ProductGroupID,
 ProductID From Products;

Load '<Productgroup:' & ProductGroupID & '>' as %ProductID,
 ProductGroupID,
 ProductID From Products;

Load '<ANY>' as %ProductID,
 ProductGroupID,
 ProductID From Products;

8

An alternative approach to achieve the same goal is to concatenate the product group ID with the

product ID using a known delimiter, e.g.:

Figure 7. An alternative representation of the generic key: concatenation of

product group ID and product ID. Whether to choose this or the one

above is just a matter of taste. Both work.

Inclusive and exclusive generic symbols

A generic symbol can be inclusive or exclusive. “Inclusive” meaning that the symbol includes all IDs

within the group, e.g. <Productgroup:1> does indeed link to all the products within this product

group. Hence, the example above uses inclusive generic symbols.

In contrast, an exclusive generic symbol would not link to the individual IDs within the group, but it

would only link to the group itself. In principle, the <ANY> symbol has been replaced by a <N/A>

symbol (Not Applicable). Instead of an <N/A> symbol, you can also use null().

Another way to put it is to say that an inclusive generic symbol links to all relevant elements in the

group, whereas an exclusive generic symbol links to no elements. It links to the group only.

Figure 8. A dimensional link table with exclusive generic symbols. All products

link to themselves, and in addition, the product groups link to the

respective product groups but not to the individual products.

9

Whether to use inclusive or exclusive generic symbols is up to you. In some situations it is better to

use inclusive generic symbols; in other situations it is better to use the exclusive generic symbols.

For example, if you have an authorization table where a specific user is allowed to see a specific

region in combination with any product, you obviously want the <ANY> symbol to link to all indi-

vidual products. Otherwise, the reduction would exclude the relevant records. Hence, you should

use inclusive generic symbols.

However, if you have a comparison between actual numbers and budget numbers and you have a

mixed granularity, e.g. the actual numbers are per product but the budget is per product group,

then the budget is unspecified (N/A) for the individual products. In such a situation, you probably

want the budget numbers to disappear when the user selects a specific product, but have them

visible when no such selection is made. The budget number would otherwise be misleading. In

such a case, you should use exclusive generic symbols.

Just as before, the dimensional link table is created using several consecutive Load or SELECT

statements, one for the individual products, one for the product groups, and one for the top <N/A>

symbol. The third load statement is really not necessary, since it does not link any generic symbols

to real values. But I use it to show the analogy with the inclusive generic symbols.

[Dimensional link table]:
Load ProductGroupID & '|' & ProductID as %ProductID,
 ProductGroupID,
 ProductID From Products;

Load distinct ProductGroupID & '|' & '<N/A>' as %ProductID,
 ProductGroupID,
 Null() as ProductID From Products;

Load distinct '<N/A>' & '|' & '<N/A>' as %ProductID,
 Null() as ProductGroupID,
 Null() as ProductID From Products;

10

Composite generic keys

In some cases you want IDs from several dimensions in the same generic key. As always when

you create composite keys, it is just a matter of concatenating the different keys with a proper

delimiter.

Figure 9. A master link table. The individual keys are concatenated into a

master generic key.

Just as before, the link table is created using several consecutive Load or SELECT statements,

one for each combination of the different cases:

[Link table]:
Load ProductID & '|' & CustomerID as %MasterKey,
 ProductID,
 CustomerID From …;

Load ProductID & '|' & '<ANY>' as %MasterKey,
 ProductID,
 CustomerID From …;

Load '<ANY>' & '|' & CustomerID as %MasterKey,
 ProductID,
 CustomerID From …;

Load '<ANY>' & '|' & '<ANY>' as %MasterKey,
 ProductID,
 CustomerID From …;

One minor complication when creating composite keys is that you can no longer create the keys by

loading records from the dimensional tables: There is rarely one single dimensional table that

contains keys from several dimensions. Instead you must create the link table loading from the fact

table(s).

This sometimes leads to the next complication: You may not have all the necessary keys in your

fact table. For example, you probably do not have the key for product group. Should you need a

key that does not exist there, then the best way to get that information is to use the applymap

function. With this, you can make a lookup and get the information you need.

11

Example 1: Complex security - Authorization bridge table

The first example is on authorization, i.e. access restriction where a user is allowed to see some,

but not all data. I assume that the process of authentication (user identification) has been made so

that QlikView “knows” which user it is that holds the session. The step of authorization is then a

matter of determining which data the user is allowed to see.

QlikView can reduce the data so that the user only can see that which has been approved for that

specific user. Such a reduction can be made either with a distribution within the QlikView Publisher,

or using the Section Access within the QlikView script. In both cases, you need one or several

reducing fields that are connected to the user IDs; you need an authorization table listing field

values approved for each user. QlikView or QlikView Publisher will then make the selection as

defined by the listed field values and purge all excluded data from the session or from the file.

If you want to make a reduction in a single field, you do not need generic keys.

If you want to limit data to the intersection of filters set in two or more fields, e.g. a user is allowed

to see records that pertain to product X and customer A, but nothing else; then you can just link the

two reducing fields to your data model. You do not need generic keys.

Figure 10. Source table with authorization information. The user “DAVID” is

allowed to see all products, but just for customer 5 and 7. In addition,

he is also allowed to see all customers, but just for product 6 or 7.

However, if you want to limit data to the union of filters set in two or more fields, e.g. either to

product X or to customer A, then you will need generic keys. Such an authorization table could look

like the one above.

This authorization table already contains symbols to for groups of products or groups of customers.

To load this in QlikView, you will need to interpret the generic keys in an authorization bridge table.

The authorization bridge table (second table from the right in the picture below) will link your

authorization table with your transaction table using AuthID and %AuthID, which both are compo-

site keys with information on both product ID and customer ID. In addition, %AuthID is a generic

key.

12

Figure 11. Example of data model when using an authorization bridge table.

Authorization table in the QlikView data model

The first step is to load the authorization table (rightmost table in the picture above). To do this, I

expand the individual rows into their components, using the subfield function. The subfield function

will make the Load statement loop over the individual records so that each subfield ends up in its

own record. But I do not want to map the <ANY> symbols to individual products and individual

customers yet. Instead I will load this as a generic key.

Further, I will in this example use a copy of the user ID (NTNAME) as reducing field. Hence,

AuthorizationTable:
Load Upper(NTNAME) as USER,
 Subfield(PRODUCT_ID, ';') & '|' & Subfield(CUSTOMER_ID, ';') as %AUTH_ID
 From AuthorizationTable ;

Figure 12. The expanded authorization table when loaded into QlikView.

13

Authorization ID in the transaction table

I also need to define the authorization ID in the transaction table. In my example, this means the

order details table. However, there is no customer ID in this table, so I need to fetch this from the

order header table. But rather than joining the two tables, I use the applymap function.

OrderID_to_CustID:
Mapping Load OrderID, CustomerID From Orders;

OrderDetails:
Load *,
 ProductID & '|' & Applymap('OrderID_to_CustID', OrderID, 'NONE') as AuthID
 From OrderDetails ;

Authorization bridge table

The next step is to create the authorization bridge table, which is the table that will link the generic

symbols to their real values. This is a table that potentially can become very large: If I would gene-

rate all combinations of product ID and customer ID, with the possibility of generic keys, I would

face a very large number of records.

Figure 13. Example of content of an authorization bridge table.

Instead of generating all possible combinations, I load only the combinations that exist in the trans-

action table and at the same time in the authorization table. But to do this I need four Load state-

ments, each with a preceding load. Hence:

AuthorizationBridge:
Load distinct * Where Exists(%AuthID);
Load AuthID as %AuthID,
 AuthID resident OrderDetails ;

Load distinct * Where Exists(%AuthID);
Load '<ANY>' & '|' & Applymap('OrderID_to_CustID', OrderID, 'NONE') as %AuthID,

AuthID resident OrderDetails;

Load distinct * Where Exists(%AuthID);
Load ProductID & '|' & '<ANY>' as %AuthID,
 AuthID resident OrderDetails;

Load distinct * Where Exists(%AuthID);
Load '<ANY>' & '|' & '<ANY>' as %AuthID,
 AuthID resident OrderDetails;

14

In other words: I load from the order details, so I only get the combinations that really exist in the

transactional data. In addition, I pipe the result into a preceding load to filter it further; I only save

the records where the corresponding generic key exists in the authorization table.

Finally, I need to create the Section Access table with the user names. The reduction will then be

made on the USER field.

Section Access;
Load ACCESS, NTNAME, Upper(NTNAME) as USER

From AuthorizationTable; Section Application;

An alternative to the section access table is to distribute the app using the QlikView Publisher. All

you need to do then is to reduce and distribute on the field USER.

And with this the problem is solved.

15

Example 2: Concatenation of fact tables - Actual and Budget

Another common case is when you want to compare actual numbers from a sales or a cost data

base with the budgeted numbers. The best way to do this is in my mind to concatenate the two

tables into a common fact table.

When doing so you often encounter the problem of different granularity. The actual numbers are

e.g. per day where the budget numbers are per month; the actual numbers are per customer where

the budget numbers are per region or country; the actual numbers are per salesman where the

budget numbers are per sales unit; etc. The pictures below show a typical situation.

Figure 14. Fact table for actual numbers with five foreign keys: CustomerID,

SalesRepID, ProductID, OrderDate and ShipperID.

Figure 15. Snowflake data model for actual numbers with its corresponding five

dimensions: shippers; customers and countries; sales reps and sales

units; products and product groups; and finally the master calendar

with dates and months.

Figure 16. Fact table for budget numbers with four foreign keys: CountryID,

SalesUnitID, product CategoryID and Month.

16

Figure 17. Data model for budget numbers with its corresponding four

dimensions: customer countries, sales units, product groups and

months. Note that the shippers’ dimension is missing as well as the

detailed level of the four existing dimensions.

Although the two data models are different, they share a lot of information. The four dimensional

tables in the budget data model are identical to the corresponding tables in the data model for the

actual numbers. The goal is to merge the two data models without losing any information, which

can be done using generic keys.

Loading the actual numbers

First, I load the actual numbers. However, instead of the normal keys for the four common

dimensions, I use generic keys. But these cannot be created without knowledge about the

dimensional groups, e.g. which product group a specific product belongs to. This is information that

can be fetched from the dimensional tables using the applymap function. Hence:

CustomerID_to_CountryID:

Mapping Load CustomerID, CountryID From Customers;

SalesRepID_to_SalesUnitID:

Mapping Load SalesRepID, SalesUnitID From SalesReps;

ProductID_to_CategoryID:

Mapping Load ProductID, CategoryID From Products;

Facts:

Load Amount, OrderID, ShipperID,

 Applymap('CustomerID_to_CountryID', CustomerID,null()) & '|' & CustomerID as %CustomerID,

 Applymap('SalesRepID_to_SalesUnitID',SalesRepID,null()) & '|' & SalesRepID as %SalesRepID,

 Applymap('ProductID_to_CategoryID', ProductID,null()) & '|' & ProductID as %ProductID,

 Num(MonthStart(OrderDate)) & '|' & Num(Floor(OrderDate)) as %OrderDate,

 'Actual' as Type From ActualNumbers ;

In other words: The CountryID is fetched from the customer table; the SalesUnitID is fetched from

the salesman table; and the CategoryID is fetched from the product table. All three are stored in the

corresponding generic keys. For the fourth generic key I use the date serial number as integers;

first for the month, then for the date.

17

Loading the budget numbers

Next step is to append the budget numbers onto this table using the concatenate prefix. Also here I

use generic keys, but this time I use the N/A symbol for the detailed level:

Concatenate (Facts) Load Amount,

 CountryID & '|' & 'N/A' as %CustomerID,

 SalesUnitID & '|' & 'N/A' as %SalesRepID,

 CategoryID & '|' & 'N/A' as %ProductID,

 Num(MakeDate(Year, Month)) & '|' & 'N/A' as %OrderDate,

 'Budget' as Type From Budget ;

The fields OrderID and ShipperID are missing so they will get NULL values in the budget part of the

fact table, which is OK since these fields are irrelevant for the budget numbers. The field Type

finally, is a created field with just two values: ‘Actual’ and ‘Budget’. It can be used as dimension in

charts and as flag in expressions.

Dimensions and dimensional link tables

Further, I create the dimensional link tables, just as described above in the section “Groups in the

dimensions”. The group symbols should be exclusive, since I do not want the individual

dimensional values to link to budget numbers.

[%Products]:
Load CategoryID & '|' & ProductID as %ProductID,
 CategoryID,
 ProductID From Products;

Load CategoryID & '|' & '<N/A>' as %ProductID,
 CategoryID,
 Null() as ProductID From Products;

The other dimensional link tables are created in a similar way.

Finally, when loading the dimensions like the product table, these must not contain the key to the

dimensional group like the product group. The obtained data model now looks like in the picture

below. All information is there and all links work correctly.

18

Figure 18. The data model with the actual numbers merged with the budget

numbers.

19

Example 3: Link table and multiple fact tables

In some cases, the fact tables are so different that you do not want to concatenate them. Then you

can create a solution using generic keys in combination with a master link table.

My example comes from the pharmaceutical industry where the situation often is that you want to

compare sales numbers from pharmacies with the sales calls that your sales representatives have

made to physicians. The problem is similar to the previous example, however much more complex.

The sales numbers are per product package, i.e. a sub-group in the product dimension. Geograph-

ically the sales numbers are reported per physician, per pharmacy or per territory (depending on

country), which only indirectly is connected to the sales representative.

The sales calls are found in two tables: Visits and VisitDetails. These describe how a sales repre-

sentative visits a physician and shows products. Several products can be shown in a sales call.

Finally, the sales representatives have targets on how many calls they should make and how many

products they should show. These are stored in the Targets table.

Figure 19. Sales data model from the pharmaceutical industry – if tables were

loaded as-is. Dimensions to the left; fact tables to the right.

An additional complication is the forked territorial dimension: Both physicians and sales represent-

atives belong to territories, but there is no direct connection between a specific sales representative

and a specific physician.

The details of the challenge differ from country to country and from company to company, but the

example still describes the general problem well.

20

Loading these tables into QlikView as they are will obviously not work. There are far too many links

that create circular dependencies. Instead the data must be remodelled into a snowflake scheme.

For this, generic keys in combination with a master link table can be a great help.

There are four table types in this solution: Dimensions, Dimensional link tables, Fact tables and the

Master link table. For each type there are some things to be aware of:

Dimensions and dimensional link tables

First there are the dimensional tables. These should be loaded in a standard way, however without

the keys to the groups. For instance, the product table should not contain a key to product groups.

The dimensional groups should still be loaded as individual dimensional tables. In this case it

means that products, months and territories should be loaded as separate tables.

All fields that the user will use to make selections should exist in the dimensional tables.

Then there are the dimensional link tables. These should be loaded as described above in the

section “Groups in the dimension”, i.e. with several consecutive Load statements so that also the

<ANY> symbol links to all individual dimensional elements.

The question is which generic keys you should have. In my example I choose to have territories as

a separate independent dimension, but I combine date and month into one generic key and

package and product into another. All in all, I get five generic keys: %TerritoryID, %ProductID,

%SalesRepID, %PhysicianID and %Date.

Fact tables

The third group of tables is the fact tables. These should be loaded in such a way that they only

contain a master key and numbers that should be used in aggregations. They may not contain any

fields used for selections. The master key should contain information from all keys used as generic

keys. If the key is not relevant for the specific table, this part of the master key should have the

<ANY> symbol. The master key should be defined in the same way in all fact tables.

In this case it means that the master key should consist of the information that constitutes the five

generic keys:

%TerritoryID + %ProductID + %SalesRepID + %PhysicianID + %Date

But this is just half the truth: %Product and %Date have groups within the generic key, so in

practice the master key will be a concatenation of seven keys:

 TerritoryID + ProductID + PackageID + SalesRepID + PhysicianID + Month + Date

Some of the keys are not directly available and need to be fetched from other tables using

applymap.

21

Figure 20. Example of a correct sales data model from the pharmaceutical

industry. Tables are loaded using generic keys and a link table. All

dimensions are to the left and all fact tables to the far right.

First, I look at the sales table: It has keys for month, package and physician. The territory and the

product can be deduced from these keys using applymap. However, the sales representative and

date is not applicable, so these should be replaced with the <ANY> symbol. Hence, the

corresponding Load statement will be

Sales:

Load Sales,

 Applymap('PhysicianID_to_TerritoryID', PhysicianID, null()) & '|' & // -- TerritoryID

 Applymap('PackageID_to_ProductID', PackageID,null()) & '|' & // -- ProductID

 PackageID & '|' & // -- PackageID

 '<ANY>' & '|' & // -- SalesrepID

 PhysicianID & '|' & // -- PhysicianID

 Num(Month) & '|' & // -- Month

 '<ANY>' // -- Date

 as %MasterKey From Sales ;

Visits and VisitDetails are joined and this new table has date, physician, sales representative and

product as keys. Hence, the corresponding Load statement will be

22

Visits:

Load 1 as Calls,

 Applymap('PhysicianID_to_TerritoryID', PhysicianID, null()) & '|' & // -- TerritoryID

 ProductID & '|' & // -- ProductID

 '<ANY>' & '|' & // -- PackageID

 SalesRepID & '|' & // -- SalesrepID

 PhysicianID & '|' & // -- PhysicianID

 Num(MonthStart(Date)) & '|' & // -- Month

 Num(Floor(Date)) // -- Date

 as %MasterKey From Visits ;

The third fact table is the table with the target numbers. This table has month, physician, sales

representative and product as keys. Hence, the corresponding Load statement will be

Targets:

Load Target,

 Applymap('PhysicianID_to_TerritoryID', PhysicianID, null()) & '|' & // -- TerritoryID

 ProductID & '|' & // -- ProductID

 '<ANY>' & '|' & // -- PackageID

 SalesRepID & '|' & // -- SalesrepID

 PhysicianID & '|' & // -- PhysicianID

 Num(Month) & '|' & // -- Month

 '<ANY>' // -- Date

 as %MasterKey From Targets ;

Master link table

Finally there is the master link table. It should contain only the keys that link it to the dimensional

link tables and the master key that links it to the fact tables. No other fields should be loaded in this

table.

Potentially this table can become very large, so it is important that is loaded in a way so that the

number of records is minimized. Therefore I load only the master keys that exist in the fact tables.

But as a consequence, three consecutive Load statements are needed to create the link table, one

for each fact table.

Further, the link table should be loaded with the distinct clause.

The Load statement loading the records from the sales table hence becomes:

23

[Master Link Table]:

Load distinct

 Applymap('PhysicianID_to_TerritoryID', PhysicianID, null()) as %TerritoryID,

 Applymap('PackageID_to_ProductID', PackageID,null()) & '|' &

 PackageID as %ProductID,

 '<ANY>' as %SalesRepID,

 PhysicianID as %PhysicianID,

 Num(Month) & '|' &

 '<ANY>' as %Date,

 Applymap('PhysicianID_to_TerritoryID', PhysicianID, null()) & '|' & // -- TerritoryID

 Applymap('PackageID_to_ProductID', PackageID,null()) & '|' & // -- ProductID

 PackageID & '|' & // -- PackageID

 '<ANY>' & '|' & // -- SalesrepID

 PhysicianID & '|' & // -- PhysicianID

 Num(Month) & '|' & // -- Month

 '<ANY>' // -- Date

 as %MasterKey From Sales ;

There are three things to note here:

1) The definition of the master key is identical to the definition used when loading the sales

fact table.

2) The Load statement has two parts; one where the dimensional generic keys are defined

and one where the master key is defined.

3) The definitions of the dimensional generic keys (first part of the load) are identical to the

sub-parts of master key (second part of the load).

Similar load statements are created for the other two fact tables.

This concludes the description of how to load multiple fact tables using generic keys and a fact
table. The resulting data model can be seen in Figure 20.

24

Some practical tips

Hide the generic keys

If you name all your generic keys with e.g. a percent sign as first character, and then set this

character as the “HidePrefix”, the generic keys will be hidden for the users.

Set HidePrefix = % ;

Use variables for the generic symbols

To ensure that you only store the actual text representing the <ANY> symbol in one place, you

could store it in a variable that you can access in your load statements. You can do the same with

the <N/A> symbol and your concatenation symbol:

Set ANY = <ANY> ;
Set NA = <N/A> ;
Set & = & '|' & ;

The load statement then becomes much more compact, e.g.:

Load ProductID $(&) '$(ANY)' as %MasterKey,
 ProductID,

 CustomerID From …;

Use Autonumber

The generic keys may become long since they are concatenated strings. One way to make them

shorter and less memory consuming is to use autonumber, a function which assigns an integer

instead of the long string. No information is lost.

Load Autonumber(ProductID $(&) '$(ANY)') as %MasterKey,
 ProductID,

 CustomerID From …;

Use Applymap

If you do not have a key that you need, you can use applymap as a lookup function. The below

load statement uses the order ID as key to make a lookup for the correct customer ID.

OrderID_to_CustID:
Mapping Load OrderID, CustomerID From Orders;

OrderDetails:
Load *,
 ProductID $(&) Applymap('OrderID_to_CustID', OrderID, 'NONE') as AuthID
 From OrderDetails ;

HIC

