Qlik@

Qlik Application Performance Optimization Strategies (QAPQOS)

QlikPerf.com

Document Author: Jeff R. Robbins

Email: Jeff.Robbins@qlik.com; jr@QlikPerf.com
Date: February 2", 2020

Contents

INEFOAUCTION Lot
The Performance LifeCycCleccccviiii
QAPOS 1: Refactor Objects & EXPressionsccccceeeeeeeeie i,
QAPOS 2: Reduce Data Model Complexityccccceeeeeieiiiiiiii e,
QAPOS 3: Pre-aggregate (Consolidate) Fact ROWSccoeeeeeeeieeeeennn,
QAPOS 4: Streamline Table LinKS ..o,
QAPOS 5: Remove Redundant and Unused Dataccoeeeeeeeieeeeennn,
QAPOS 6: Warm the Cache.......cccccovviiiiiiiie e
QAPOS 7: Segment the Application........ccoociiiiiiiiii e
Appendix 1: Unit Performance Testing with CalcTime (QlikView Only)

Appendix 2: Unit Performance Testing with the PMPT (QlikView Only)

Introduction

Qlik Application Performance Optimization Strategies

Page 1 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/
https://qlikperf.com/
mailto:Jeff.Robbins@qlik.com;%20jr@QlikPerf.com

Qlik @

Qlik Application Performance Optimization Strategies, abbreviated as QAPOS?, provide a framework by which to identify and
implement specific optimizations in QlikView and Qlik Sense applications. Optimizations are application changes that provide
empirically measurable performance improvement, in one or more of the following aspects:

1. Reduced response time
2. Decreased hardware resource consumption
3. Improved system reliability and stability

The Performance Lifecycle

Software application performance measurement and improvement is a cyclical process, as shown in this diagram:

1. Define Performance & Mea_sure
Criteria - BaSElne \
Performance
5. Promote
Validated
¢ Optimization
3. Apply (“VO”)into New
Performance meets No_, OPtimization Baseline
criteria? Candidate T
‘ (foc’) Yes
Yes l ‘
¢ S IMESSHIE Performance
Finished Changed > .
improved?

Performance

! The pronunciation of “QAPOS” is /kapss/, identical to that of “capos”, plural for a guitar accessory: https://en.wikipedia.org/wiki/Capo

Qlik Application Performance Optimization Strategies Page 2 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/
https://en.wikipedia.org/wiki/Capo

Qlik@

QAPOS facilitate a performance measurement and improvement lifecycle as follows:
1. Define performance criteria.

Example criteria are: An average response time of 8 seconds or lower is acceptable, where response time is the time between a
user input (click) and the time at which all charts have completed calculating and rendering.? The 8 second average response
times shall be provided with a population of 1000 concurrent users, with each user thinking an average of 1 minute after each
system response.®

Measure performance with the baseline application(s), work load, and hardware configuration.

Apply a proposed application change (optimization candidate) in a test environment. The strategies (QAPOS) described in
this document specify areas in which to identify optimization candidates.

4. Measure performance after the implementation of the proposed change and compare baseline performance (step 2) with this
changed performance, as well as with the criteria established in step 1.

¢ Simple manual stopwatch testing can provide initial results to justify additional performance testing of the proposed
change, in both QlikView and Qlik Sense.

¢ In QlikView, object CalcTimes can also provide a useful unit performance testing mechanism, as described in
Appendix 1. The PMPT is another useful QlikView unit performance testing tool, as described in Appendix 2.

e Comprehensive multi-user system testing can be automated with the Scalability Tools for Qlik Sense and QlikView.

If the changed performance is better; the change is a validated optimization; promote the optimization to the new baseline.

Repeat steps 2-5 until acceptable performance (as defined in step 1) is obtained.

The following pages describe each of the 7 QAPOS in turn.

2 There is a very effective argument that percentiles are often more meaningful than averages at this link
3 The simulation of think times in performance testing is covered several places, including this link.

Qlik Application Performance Optimization Strategies Page 3 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/
https://community.qlik.com/docs/DOC-8878
https://community.qlik.com/docs/DOC-6658
https://www.dynatrace.com/blog/why-averages-suck-and-percentiles-are-great/
https://medium.com/@malith.jayasinghe/performance-testing-with-a-think-time-64b6b737e3f9

Qlik@

QAPQOS 1: Refactor Objects & Expressions

Here, we discuss two categories of refactoring: decreasing object calculation time (which does not require a Ul change) and
decreasing object calculation frequency (which may require a Ul change).

A. Decrease Object Calculation Time (with no Ul changes)
Qlik objects (such as charts) and the expressions they contain are analogous to SQL aggregation queries. Inthe same way that
there are typically multiple possible SQL queries (each with distinct performance characteristics) to achieve a desired output, there
is often more than one way to construct a Qlik object and its constituent expressions to achieve a specific result. As such, a very
powerful Qlik performance improvement strategy is object & expression refactoring, with steps as follows:

1. Review the results shown by the object under various selection states.

2. Examine the entire object (including constituent expressions and variables) to understand how it performs calculations against
the data model.

3. Conceive of and implement alternate object versions that provide the same output as the original object. In some cases, it
may be worthwhile to add a field to the data model to support the creation of a more efficient object. A common example of
this concept is replacing a calculated dimension in a chart with a dimension based on a new data model field.

4. Test the performance of the alternate object versions. If the changed performance is better in one of the alternate versions,
promote that version into the new baseline.

B. Decrease Object Calculation Frequency (may require a Ul changes)
The Qlik calculation engine re-calculates all Ul objects in cases where it detects that a user action (for example a selection in a
field) is impactful to the data displayed in the Ul object. As such, it is useful in many cases to disable calculation of an object at
certain points in time. Consider the following steps performed by a user:

1.Click Open Filters button to display list boxes for dimension fields.
2.Select values in dimension field A.

3.Select values in dimension field B.

4.Click Close Filters button to hide list boxes for dimension fields.
5.View charts.

If all Ul objects are re-calculating between each user interaction, there could be a noticeable delay between each click, providing a
slow user experience consisting of a sequence of delays. As such, it is often advantageous to disable the calculation of resource-
intensive charts until the user indicates (via clicking a Close Filters or similar button) that he would like to view the charts. The delay of
chart calculation is implemented simply by setting the sheet objects’ calculation or show conditions, such that that objects will not
show or calculate if user has not yet clicked Close Filters.

Qlik Application Performance Optimization Strategies Page 4 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/

Qlik@

QAPQOS 2: Reduce Data Model Complexity

Data models with more than 25 tables should be evaluated for consolidation opportunities, as a larger number of tables increases run-
time response times due to more frequent table traversals. In short, a data model with more tables is generally less efficient than one
with fewer tables.

To improve performance for end users in data models containing more than 25 tables, reduce the number of tables by joining tables
with fewer than four fields into the logically related table (unless a many-to-many relationship would result in a multiplication of records
and/or invalid data). Further consolidation (and run-time performance improvements) of the data model can often be achieved by

creating a common unified fact table, using Qlik techniques such as JOIN or CONCATENATE.

In short, the general recommendation is to aim for a data model with characteristics closer to a star schema than a snowflake
schema, as the lower number of tables in the star schema results in fewer time-consuming table traversals.

QAPOS 3: Pre-aggregate (Consolidate) Fact Rows

A reduction in fact table record count, with a corresponding decrease in response times, can potentially be accomplished by consolidating fact rows.
Consider the following example data set:

Transaction ID Customer ID Region <Metric Field>
1 A z 3
2 A z 4
3 B z 7
This data set could be pre-aggregated at the Region level as follows:
Region <Metric Field>
Z 14

The basic process here is to store the metric fields in the Qlik fact table at the highest granularity at which the end user needs to view the metrics.
The pre-aggregation of the metric fields can be done quite readily in the Qlik data load script with the Group by construct.

The time required for the aggregation of the transaction level data up to the higher level (the region level in this example) is consumed during the
Qlik data refresh process (to which the end user is not directly exposed) to reduce application run-time response times (as experienced directly by
the end users). While generally it is advantageous to reduce the response times experienced by end users, the trade-off in the time consumption
between data refresh and application run-time should be evaluated with the performance requirements and data refresh cycles in mind.

Qlik Application Performance Optimization Strategies Page 5 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/
http://en.wikipedia.org/wiki/Star_schema
http://en.wikipedia.org/wiki/Snowflake_schema
http://en.wikipedia.org/wiki/Snowflake_schema

Qlik@

QAPQOS 4: Streamline Table Links

Replace Textual Keys with Numeric keys: Numerical keys in the Qlik data model consume less space, and allow for potentially faster
run-time performance, than textual keys.

As with the prior strategy (fact row consolidation), one should evaluate the trade-off between run-time response times and data refresh
duration; converting textual keys to numeric keys (typically with the Qlik AutoNumber function) will likely provide faster run-time
response to end users while potentially increasing cyclic data refresh times.

QAPQOS 5: Remove Redundant and Unused Data

Fields in the data model that are not used in any charts, Ul objects or variables consume system resources but provide no benefit.
Identifying and removing such unused fields can provide performance gains.

Also, flaws in the ETL process may result in duplicated records in the data model. For example, if you know that you have 10 million
customers, but the Customers table in the Qlik data model has 20 million records, it is likely that you are experiencing record
duplication somewhere in the ETL process (possibly in the ETL process prior to Qlik, and possibly within the Qlik load script itself).
Ideally, one should analyze the ETL process to understand at which point the duplicate records are introduced, and then repair the
issue at the source. If enough time is not available such analysis, then the distinct pre-fix of the Qlik LOAD script command is an
expedient way to eliminate duplicate records, at any point within the application build process.

Qlik Application Performance Optimization Strategies Page 6 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/

Qlik@

QAPQOS 6: Warm the Cache

Cache warming entails the use of an automated mechanism to simulate a user accessing a Qlik application, between the publish time of the app and
the time of first access by a real live human user. After Qlik app publication and then cache warming, when a real user subsequently accesses the
same Qlik app, calculation results will be pulled from Qlik Server cache, rather than calculated “from scratch”. As such, response times provided to
the real user will be lower than had the cache not been warmed.

The user simulation mechanism to warm the cache can be any one of the following:

1. Any automated mechanism that can drive a web browser through a set of actions.
2. A QIik Sense Scalability Tools scenario built with the QSST.
a. Some materials use the term “pre-caching”; here are links to those materials for Qlik Sense.

One could reasonably argue that cache warming is an

operational procedure, rather than a true application -
optimization, since the application itself need not be CaChe Warmmg
changed to implement cache warming. However, we

could consider cache warming a mechanism by which Q -] 2
we optimize the state of the application; we provide .
better performance to end users by proactively 2

] k4
changing the cached state of the deployed application 3 ” Y :
from cold to warm. ‘ _Responses (comparatively slow)

Requests

Virtual
Users

ﬁ Requests

” =
g & i :
(:\3* Qg :Responses (comparatively fe

Real
Users

Qlik Application Performance Optimization Strategies Page 7 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/
https://community.qlik.com/t5/Qlik-Scalability/Qlik-Sense-Scalability-Tools/gpm-p/1490846
https://community.qlik.com/t5/Qlik-Scalability/Pre-caching-in-Qlik-Sense/gpm-p/1477822

Qlik@

QAPQOS 7: Segment the Application

A single logical application can be split across multiple physical QVW or QVF files, with each file loaded “on-demand” in a seamless
fashion. This physical division can provide lower response times to end users, as the segmented QVW or QVF active at any point it
time is smaller than a single monolithic QVW or QVF, with a smaller set of records upon which chart expressions must aggregate.

1.

In software development, decomposition entails dividing a large piece of software into smaller components, for better
performance and easier maintenance. As one common example, Microsoft Outlook consists of over 80 separate files on disk,
rather than a single monolithic file. Even though it is composed of many separate files, Outlook is one single application.

Qlik application development is quite simply one specific type of software development; we can therefore apply the technique of
decomposition to our Qlik projects to enhance the user experience by providing lower response times.

A single logical Qlik application can be split (“segmented”) across multiple physical files (QVFs or QVWs), with each file loaded
when needed in a seamless fashion. This decomposition can improve performance, as the segmented QV files are smaller than a
single monolithic QV file, with a smaller set of records upon which chart expressions must aggregate.

1. Application segmentation can be implemented in 2 different ways:
a. apriori, where application segments are built during a regularly scheduled data refresh process
b. a posteriori, where application segments are built at application run-time based on end user requests
c. Now, the a priori approach is traditionally referred to as “document chaining”, and the a posteriori approach is often

called “ODAG” (on-demand app generation). But note that both approaches are actually chaining (or linking)
multiple QVWs into a cohesive navigation path. The only difference between the a priori and a posteriori
approaches is whether the creation of the application segment QVWSs is done proactively based on a specification or
reactively based on users’ run-time requests.

The a priori approach (“document chaining”) is typically most effective when there are a limited number of ways in
which users might slice the data, and we can therefore set up a schedule to create a manageable number of
application segments that meet the users’ analysis requirements.

The a posteriori approach (“ODAG”) is a good option when where there are a very high number of ways in which the
users might slice the data, and implementing every potential slice with its own pre-built segment would result in an
excessively large number of segments, many of which might not be used on a regular basis. With ODAG, the
number of segments created is limited to those that users request at dashboard run-time.

Qlik Application Performance Optimization Strategies Page 8 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/
https://en.wikipedia.org/wiki/A_priori_and_a_posteriori
https://en.wikipedia.org/wiki/A_priori_and_a_posteriori

Qlik@

Appendix 1: Unit Performance Testing with CalcTime (QlikView Only)

During QlikView dashboard development, we can use
CalcTimes to easily test the performance impact of changes.

Sheet Properties [Main]

Object-level CalcTimes can be viewed in the properties for General | Fields | Objects | Security | Triggers|

each sheet. CalcTime is the wall clock time in milliseconds : : :

between the user action (click) and the time which the object ObjectD | Type Caption Showode CalcTime

displays the calculation results. CH Straight Table CHO1 Mormal 3994
CHo2 Straight Table CHO02 Conditional: Normal 2091

Within sheet properties, the object list can be sorted by BLO? Button Conditional: Hidden)

CalcTime. The highest CalcTime represents the response time
for the most recently completed action (selection or sheet transition); response time is the time between the user click and the completion of
calculation of all objects on the sheet. Due to concurrency, the objects’ CalcTimes are not additive; rather, the highest CalcTime tells us the
end-to-end response time. For example, the screen shot immediately above indicates that that the response time for the most recently
completed action was 3994 milliseconds, the time at which the last object, CHO1, completed calculation.

Assuming an equivalently-sized hardware platform for both QV Desktop and QV Server, then the response time experienced by end users
through QlikView Server (for non-cached calculations) will typically be higher than the best-case numbers reflected in the CalcTimes in
QlikView Desktop, due to network latency and contention for resources across multiple users. Regardless, CalcTimes do provide a useful
mechanism for comparative unit performance testing of alternate implementation options.

Note that QlikView Server and Qlik Sense Server both provide cross-session caching; calculation results for a particular app and selection
state for a given user can be stored and provided very quickly to other users at a later point in time.* The benefits obtained by cross-session
caching can be simulated in QlikView Desktop by not clearing the cache immediately before making a selection for the second time. To
simulate an un-cached state and the resulting higher CalcTimes, a ClearCache button can be used during development. This ClearCache
button should invoke a macro, defined as follows:

sub ClearCache
ActiveDocument.ClearCache
msgbox "Cache has been cleared."”
end sub

4 Caching provides the most benefit when there is a common data set being analyzed by multiple users; if section access constrains
each user to his own distinct data set, then cross-session caching is not applicable.

Qlik Application Performance Optimization Strategies Page 9 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/

Qlik@

Appendix 2: Unit Performance Testing with the PMPT (QlikView Only)

Multi-user system performance tests gather performance data objectively; these tests can be run with the Qlik Sense or QlikView
Scalability Tools. However, developers may wish to work on performance optimization prior to the availability of a system test
environment.

As such, we provide the supplemental mechanism of the “Poor Man’s Performance Tester’ (PMPT), which can be run and analyzed
entirely within QlikView Desktop, with a hardware platform as small as a single developer’s laptop. The PMPT is a unit performance
testing utility, run by the developer prior to system testing.

The PMPT, which can be obtained from Qlik Consulting, provides a higher level of automation than the CalcTime testing described in the
prior section, with less setup overheard than the Scalability tools for Qlik Sense or QlikView.

| QlikView @64 - [CAPMPTVPMPT Test Results Analyzer va.qvw] =
EEiIe Edit View Selections Layout Settings Bookmarks PReports Tools Object Window Help

Response Time Results LChart Detail @& L Configuration

2 Al Response Time Detail H2 Time by Action B2 Tirne by Te:

App Comparison
Avg Resp. Time Throughput Response Time
App * Measurements Response Std (Actions per Reduction as % of ;:rn?lﬁ%p;stelllilﬁgease E"Sf-g;g];:ﬁ:] Eput as
Taken Time (s) Deviation Minute) Baseline " "
Baseline G 1.20 0.6 3.6 MAA, M4, AL,
Dptimized G 0.75 0.5 /9.8 60.5% 152.9% 252.9%

Qlik Application Performance Optimization Strategies Page 10 of 10 February 2", 2020 QlikPerf.com

https://qlikperf.com/
https://community.qlik.com/docs/DOC-8878
https://community.qlik.com/docs/DOC-6658
https://community.qlik.com/docs/DOC-8878
https://community.qlik.com/docs/DOC-6658

